Pre-Calculus 30				Chapter 1 Review

y = f(x) + k	if k > 0, a vertical translation of “k” units up
		if k < 0, a vertical translation  of “k” units down
y = f(x – h) 	if h > 0, a horizontal translation of “h” units to the right.
		if h < 0, a horizontal translation of “h” units to the left.
y = -f(x)		a reflection in the x-axis
y = f(-x)		a reflection in the y-axis

y = af(x)		a vertical stretch about the x-axis by a factor of 

y = f(bx)		a horizontal stretch about the y-axis by a factor of 
y = af(b(x – h)) + k 

Mapping Notation (image points):  
Invariant points – points that remain the same after a transformation is applied.

Writing equations:  Look at stretches (a and b) and reflections (-a and -b) first.  Then look at translations/shifts (h and k).
Inverse of a relation:  
· interchange the x-coordinates and y-coordinates
· the graph of the inverse is a reflection of the relation in the line y = x
· domain and range are reversed
if the inverse of a function f(x) is a function, it is written f -1(x)
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Base Radical Function:  has the following characteristics:
· left endpoint at (0, 0)
· no right endpoint
· shape of half a parabola



Graph    by transforming    using the parameters a, b, h, and k.



Key values to consider when graphing  and are f(x) = 0 and f(x) = 1.  (These are invariant points.)



Domain of  :  all values in the domain of f(x) for which f(x)0 is defined


Range of  :  the square roots of all values in the range of f(x) for which f(x) is defined

Solving Radical Equations algebraically

Solutions/Roots of Radical Equations are the x-intercepts of the graphs of the corresponding radical function.
				
Chapter 3 Review
Definition of polynomial
Synthetic Division 
Remainder Theorem 
· If P(x) is divided by x – a, the remainder is P(a)
· If P(x) ÷ (x – a) = 0, then x – a is a factor of the polynomial
Graphing Odd Degree Polynomials – have 1 to n zeros (x-intercepts)
· Positive lead term – start in Quadrant  III and end in Quadrant I
· Negative lead term – start in Quadrant  II and end in Quadrant IV
Graphing Even Degree Polynomials – have 0 to n zeros (x-intercepts)
· Positive lead term – start in Quadrant  II and end in Quadrant I
· Negative lead term – start in Quadrant  III and end in Quadrant IV
Factoring – GCF, difference of squares, factoring trinomials, synthetic division
Sketching graphs
· Find x-intercepts (let y = 0).  If necessary, factor.  Look at factors and their multiplicity to decide on the behaviour of the graph at each zero. 
· y-intercept (constant term…or let x = 0)
· Look at leading term (degree and coefficient) and decide on end behaviour
· Be able to state intervals where the function is positive and where it is negative 
Sketching graphs using transformations
· 
.  Use mapping notation to sketch the transformed graph.
Word Problems

Chapter 9 Review

Rational functions:    .  Restriction:  q(x)≠0


Base Functions:  						


Tranformations:  					
Vertical asymptotes:		x = h					x = h
Horizontalasymptotes:		y= k					y = k
Vertical stretch:			a					a


Mapping Notation:  					
Domain – possible values for x
Range – possible values for y
Graphing Rational Functions/Writing Equations of Rational Functions
· x-intercept:  a factor of only the numerator
· vertical asymptote:  a factor of only the denominator
· point of discontinuity: a factor of both the numerator and the denominator
· find y-intercept (let x = 0)
· sign analysis:  tells where the graph is positive and negative
· horizontal asymptote:	
a) if numerator degree = denominator degree, y = ratio of leading coefficients
b)  If numerator degree < denominator degree, y = 0
Solving Rational Equations Algebraically – watch for extraneous roots!

Chapter 10 Review

Sum of Functions


        This can also be written as  .

Difference of Functions


	     This can also be written as	

Product of Functions


           This can also be written as 

Quotient of Functions



	                  This can also be written as  ,     where 




We can substitute one function, , into another function, .  The result would be .  
This is read “g of f of x”.  


The notation for this function composition is …not to be confused with multiplication which is .
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