Chapter 9 Review

Rational functions: $f(x)=\frac{p(x)}{q(x)}$. Restriction: $q(x) \neq 0$

Base Functions:	$f(x)=\frac{1}{x}$	$f(x)=\frac{1}{x^{2}}$
Tranformations:	$g(x)=\frac{a}{b(x-h)}+k$	$g(x)=\frac{a}{(b(x-h))^{2}}+k$
Vertical asymptotes:	$x=h$	$x=h$
Horizontalasymptotes:	$y=k$	
Vertical stretch:	$\left(\frac{1}{b} x+h, a y+k\right)$	$y=k$ a
Mapping Notation:		$\left(\frac{1}{b} x+h, a y+k\right)$

Domain - possible values for x
Range - possible values for y

Graphing Rational Functions/Writing Equations of Rational Functions

- x-intercept: a factor of only the numerator
- vertical asymptote: a factor of only the denominator
- point of discontinuity: a factor of both the numerator and the denominator
- find y-intercept (let $x=0$)
- sign analysis: tells where the graph is positive and negative
- horizontal asymptote:
a) if numerator degree $=$ denominator degree, $y=$ ratio of leading coefficients
b) If numerator degree < denominator degree, $y=0$

Solving Rational Equations Algebraically - watch for extraneous roots!

Review Questions: \quad Page 468 \#1-3,5, 6, 8a, 9 (alg. only), 10a (alg. only)
Page 470 \#1, 2, 6, 7 (alg. only), 8, 10 11, 12

