Pre-Calculus 30

Chapter 9 Review

Rational functions:	$f(x) = \frac{p(x)}{(x)}$. Restriction: $q(x) \neq 0$	
	q(x)		

Base Functions:	$f(x) = \frac{1}{x}$	$f(x) = \frac{1}{x^2}$
Tranformations:	$g(x) = \frac{a}{b(x-h)} + k$	$g(x) = \frac{a}{\left(b(x-h)\right)^2} + k$
Vertical asymptotes:	x = h	<i>x</i> = <i>h</i>
Horizontalasymptotes:	y= k	y = k
Vertical stretch:	a	а
Mapping Notation:	$\left(\frac{1}{b}x+h,\ ay+k\right)$	$\left(\frac{1}{b}x+h, ay+k\right)$

Domain – possible values for x

Range – possible values for y

Graphing Rational Functions/Writing Equations of Rational Functions

- *x-intercept*: a factor of *only* the numerator
- vertical asymptote: a factor of only the denominator
- *point of discontinuity*: a factor of *both* the numerator and the denominator
- find y-intercept (let x = 0)
- sign analysis: tells where the graph is positive and negative
- horizontal asymptote:
 - a) if numerator degree = denominator degree, y = ratio of leading coefficients
 - b) If numerator degree < denominator degree, y = 0

Solving Rational Equations Algebraically – watch for extraneous roots!

<u>Review Questions:</u> Page 468 #1 – 3, 5, 6, 8a, 9 (alg. only), 10a (alg. only)

Page 470 #1, 2, 6, 7 (alg. only), 8, 10 11, 12