Pre-Calculus 30

Chapter 8 Review

The inverse of $y = c^x$ is:

b) $x = c^{y}$ in exponential form (where x, c > 0 and $c \neq 1$)

a) $y = \log_c x$ in logarithmic form (where x, c > 0 and $c \neq 1$)

The graphs of an exponential function and its inverse logarithmic function are reflections of each other about the line y = x

Exponential form to Logarithmic form: $y = c^x \longleftrightarrow \log_c y = x$

For the logarithmic function $y = \log_c x$

the domain if $\{x : x > 0, x \in R\}$ the range is $\{y : y \in R\}$ the x-intercept is 1 the vertical asymptote is x = 0

For the logarithmic function $y = a \log_c (b(x-h)) + k$

the domain if $\{x : x > h, x \in R\}$ the range is $\{y : y \in R\}$ the x-intercept is dependent on the shift (vertical or horizontal) and/or the horizontal stretch the vertical asymptote is x = h

(Note: a is vertical stretch, b is horizontal stretch, h is horizontal translation/shift, k is vertical translation/shift)

Laws of Logarithms

 $\log_c MN = \log M + \log N$

$$\log_c \frac{M}{N} = \log_c M - \log_c N$$

 $\log_{c} M^{P} = P \log_{c} M$

Solving Logarithmic Equations:

Logs on both sides: If $\log_c L = \log_c R$, then L = R

Log on one side: If $\log_c x = y$, then $c^y = x$

Solving Exponential Equations

If possible, write both sides with a common base

Take the log of both sides

<u>Review Questions</u>: Page 416 # 1 – 4, 6 – 8, 11 – 14, 16, 18 – 20, 21, 23a