Chapter 8 Review

The inverse of $y=c^{x}$ is:
a) $y=\log _{c} x$ in logarithmic form (where $x, c>0$ and $c \neq 1$)
b) $x=c^{y}$ in exponential form (where $x, c>0$ and $c \neq 1$)

The graphs of an exponential function and its inverse logarithmic function are reflections of each other about the line $y=x$

Exponential form to Logarithmic form: $y=c^{x} \longleftrightarrow \log _{c} y=x$
For the logarithmic function $y=\log _{c} x$
the domain if $\{x: x>0, x \in R\}$
the range is $\{y: y \in R\}$
the x -intercept is 1
the vertical asymptote is $\mathrm{x}=0$
For the logarithmic function $y=a \log _{c}(b(x-h))+k$
the domain if $\{x: x>h, x \in R\}$
the range is $\{y: y \in R\}$
the x -intercept is dependent on the shift (vertical or horizontal) and/or the horizontal stretch
the vertical asymptote is $\mathrm{x}=\mathrm{h}$
(Note: \boldsymbol{a} is vertical stretch, \boldsymbol{b} is horizontal stretch, \boldsymbol{h} is horizontal translation/shift, \boldsymbol{k} is vertical translation/shift)

Laws of Logarithms

$$
\begin{aligned}
& \log _{c} M N=\log M+\log N \\
& \log _{c} \frac{M}{N}=\log _{c} M-\log _{c} N \\
& \log _{c} M^{P}=P \log _{c} M
\end{aligned}
$$

Solving Logarithmic Equations:
Logs on both sides: If $\log _{c} L=\log _{c} R$, then $L=R$
\log on one side: If $\log _{c} x=y$, then $c^{y}=x$
Solving Exponential Equations
If possible, write both sides with a common base
Take the \log of both sides
Review Questions: Page 416 \# 1-4, $6-8,11-14,16,18-20,21,23 a$

