8.1 Understanding Logarithms (Day 1)

<u>Recall</u>: to find the inverse of a function or relation, interchange the *x* and *y* values. The graphs of inverse functions/relations are reflections of each other in the line y = x.

 $\log_c x = y$ is the *inverse* of the exponential function $c^x = y$. If you graph $y = c^x$ and then reflect it in the line y = x, you will get $y = \log_c x$. (c > 0 and c \neq 1)

A **common logarithm** is a logarithm with base 10. In this case, we don't write the base of the logarithm. The log button on a calculator is for **common logarithms**.

• $\log_{10} 100 = 2$ can be written as

Exponential Form	\rightarrow	Logarithmic Form
$c^{y} = x$		$\log_c x = y$

Complete:

Exponential	Logarithmic
$7^4 = 2401$	
$5^2 = 25$	
	$\log_5 78125 = 7$
	$\log_{\frac{1}{2}} 16 = -4$
$p^q = r$	
	$\log_j h = m$

Evaluate: a) log₂8

b) log₅ 625

c) $\log_6 1$

d) $\log_2 \sqrt{8}$

e) $\log_2 32$ f) $\log 1\,000\,000$ g) $\log_9 \sqrt[5]{81}$ h) $\log_3 9\sqrt{3}$

Restrictions on the value of 'c'

A logarithmic function is in the form $y = \log_c x$, where c > 0 and $c \neq 1$. Why does 'c' have these restrictions? (Hint: write in exponential form)

Helpful Hints

- $\log_c 1 = 0$ since in exponential form $c^0 = 1$.
- $\log_c c = 1$ since in exponential form $c^1 = c$
- $\log_{c} c^{x} = x$ since in exponential form $c^{x} = c^{x}$
- $c^{\log_c x} = x, x > 0$, since in logarithmic form $\log_c x = \log_c x$

Page 375 - Your Turn. Determine the value of x. Write in exponential form first.

1.
$$\log_4 x = -2$$
 2. $\log_{16} x = -\frac{1}{4}$ 3. $\log_x 9 = \frac{2}{3}$

8.1 Understanding Logarithms (Day 2)

Recall:

• To find the *inverse* of a function, interchange x and y values.

Example

State the equation of the inverse of $f(x) = 3^x$. State your answer in exponential and logarithmic form.

Sketch the graph of $f(x) = 3^x$ and its inverse. Use a table of values for both. Note the relationship between the two.

Determine the following characteristics of the inverse graph:

Domain:

Range:

x-intercept, if it exists

y-intercept, if it exists

equations of any asymptotes

Assignment: Page 380 #1, 8, 10, 14b, 21 (try 24)

8.2 Transformations of Logarithmic Functions

Given the base function $y = \log_c x$, multiple transformations can be applied using the general transformation model $y = a \log_c (b(x-h)) + k$. The mapping notation for multiple transformations would be $(x, y) \rightarrow ($ _____, ___).

Example: The graphs below show how $y = \log x$ is transformed into $y = a \log(b(x-h)) + k$ by changing one parameter at a time. The effect on one key point is shown at each step. For each graph, explain the effect of the parameter introduced and write the equation of the transformed function.

Graph 1:

Graph 3:

Page 384 – Example 1

Use transformations to sketch: $y = \log_3(x+9) + 2$

Graph 2:

Graph 4:

Assignment: Page 389 #1, 2 Examples

1. Use transformations to sketch the graph of $y = \log(x-10)-1$.

- b) Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote ii) the domain and the range
 - iii) the *y*-intercept, if it exists

- iv) the *x*-intercept, if it exists
- 2. a) Determine the parameters and use mapping notation to sketch the graph of $y = 2 \log_3 (-x+1)$.

- b) Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote

ii) the domain and the range

iii) the y-intercept, if it exists

iv) the *x*-intercept, if it exists

See Example 3 (page 387).

3. Your Turn (Page388). The graph at right was generated by *stretching* and *reflecting* the graph of $y = \log_4 x$. Write the equation of the second function on the graph.

4. Only a horizontal translation (or ______) has been applied to the graph of $y = \log_4 x$ so that the graph of the transformed image passes through the point (6, 2). Determine the equation of the transformed image.

Application (Page 389 – Your Turn)

- 5. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, *F*, of flower species that a butterfly feeds on and the number of butterflies observed, *B*, can be modelled by the function $F = -2.641 + 8.958 \log B$.
 - a) How many flower species would you expect to find if you observed 100 butterflies?
 - b) Predict the number of butterfly observations in a region with 25 flowers species.

Pre-Calculus 30

8.2 Transformations of Logarithmic Functions (Day 1)

Given the base function $y = \log_c x$, multiple transformations can be applied using the general transformation model $y = a \log_c (b(x-h)) + k$. The mapping notation for multiple transformations would be $(x, y) \rightarrow (____).$

1. Given the base function $f(x) = \log_3 x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?

2. Given the base function $f(x) = \log_3 x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?

3. Given the base function $f(x) = \log_3 x$, what sort of transformation occurred to produce the second graph?

What is the equation of the second function?

4. Given the base function $f(x) = \log_3 x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?

Page 384 – Example 1

Use transformations to sketch: $y = \log_3(x+9) + 2$

			1								
ļ	ļ	ļ	ļ	 							
1	İ	1	1		 		 	 		 	
ļ		ļ	ļ	 							
	ŀ	1	ŀ		 	 	 	 	 	 	
L	L		l								
			ŀ	 							
ļ	ļ		ļ	 							
1		1	1								
ļ	ļ	ļ	ļ	 	 	 		 		 	
l	İ	1	İ	 	 	 	 	 	 	 	
			ļ		 	 	 		 	 	
			ŀ	 	 	 	 	 	 	 	
1	l	1	1	 	 	 	 	 	 	 	
1											

Pre-Calculus 30

Examples

- 1. Use transformations to sketch the graph of $y = \log(x-10)-1$.
- b) Identify the following characteristics of the graph of the function. ii) the domain and the range
 - i) the equation of the asymptote
 - the *y*-intercept, if it exists iii)

- the x-intercept, if it exists iv)
- Determine the parameters and use mapping notation to sketch the graph of $y = 2 \log_3(-x+1)$. 2. a)

- b) Identify the following characteristics of the graph of the function.
 - the equation of the asymptote i)

the domain and the range

ii)

iii) the *y*-intercept, if it exists

the x-intercept, if it exists iv)

See Example 3 (page 387). Determining the equation of a function, given its graph.

3. Your Turn (Page388). The graph at right was generated by *stretching* and *reflecting* the graph of $y = \log_4 x$. Write the equation of the second function on the graph.

4. Only a horizontal translation (or _____) has been applied to the graph of $y = \log_4 x$ so that the graph of the transformed image passes through the point (6, 2). Determine the equation of the transformed image.

Application (Page 389 – Your Turn)

5. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, *F*, of flower species that a butterfly feeds on and the number of butterflies observed, *B*, can be modelled by the function $F = -2.641 + 8.958 \log B$.

a) How many flower species would you expect to find if you observed 100 butterflies?

b) Predict the number of butterfly observations in a region with 25 flowers species.

8.2 – Transformations of Logarithmic Functions

In section 8.1, you were introduced to exponential functions which are written in the form $y = \log_c x$, where c > 1 and $c \neq 1$.

• What are the characteristics of the base function when c > 1?

• What are the characteristics of the base function when 0 < c < 1?

• Is there a relationship between the graphs of the first group and the second group? Why does this happen?

Investigate:

In every chapter, we have studied specific base functions then applied to three types of transformations:

______, ____, and _____. In this lesson, we will apply these transformations

to the new base function, $y = \log_c x$.

1. Given the base function $f(x) = \log_3 x$, what of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?

2. Given the base function $f(x) = \log_3 x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

3. Given the base function $f(x) = \log_3 x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?

4. Given the base function $f(x) = \log_3 x$, what sort of transformation occurred t o produce the second graph?

What characteristics changed as a result of this transformation?

What is the equation of the second function?

Reminder: Given base function or parent function $y = \log_c x$, multiple transformations can be applied using the general transformation model $y = a \log_c (b(x-h)) + k$. The mapping notation for multiple transformations would be: $(x, y) \rightarrow ($ _____, ___).

Examples:

1a) Use transformations to sketch the graph of $y = \log(x-10)-1$.

												
 L	 l	L	l	L	L	 L	 	L	 	L	 	

- **b)** Identify the following characteristics of the graph of the function.
 - i) the equation of the asymptote
 - ii) the domain and the range
 - iii) the y-intercept, if it exists

2a) Use transformations to sketch the graph of $y = 2\log_3(-x+1)$.

		111	
		+-+	
		+-+	

b) Identify the following characteristics of the graph of the function.

- i) the equation of the asymptote
- ii) the domain and the range

iii) the y-intercept, if it exists

iv) the *x*-intercept, if it exists

3. Given the base function $y = \log_4 4x$, write the equation of the function on the graph.

4. Only a horizontal translation has been applied to the graph of $y = \log_4 x$ so that the graph of the transformed image passes through the point (6, 2). Determine the equation of the transformed image.

Application:

5. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, *F*, of flower species that a butterfly feeds on and the number of butterflies observed, *B*, can be modelled by the function $F = -2.641 + 8.958 \log B$.

Predict the number of butterfly observations in a region with 25 flowers.

Laws of Logarithms

1. Show that $\log(1000 \times 100) \neq (\log 1000)(\log 100)$. Find the value of both sides using a calculator.

Use a calculator to find the approximate value of each expression to four decimal places.

$\log 30 =$
log 99 =
log 21 =

<u>Product Law:</u> $\log_c MN =$

<u>Example</u>: Write $\log 1000 + \log 100$ as a single logarithm.

2. Show that $\log \frac{1000}{100} \neq \frac{\log 1000}{\log 100}$. Find the value of both sides using a calculator.

Use a calculator to find the approximate value of each expression, to four decimal places.

$\log 48 - \log 4 =$	log 12 =
$\log 72 - \log 2 =$	log 36 =
$\log 35 - \log 5 =$	log 7 =

Quotient Law: $\log_c \frac{M}{N} =$

Example: Write log1000 - log 100 as a single logarithm.

3. Show that $\log 1000^2 \neq (\log 1000)^2$. Find the value of both sides using a calculator.

Use a calculator to find the approximate value of each expression, to four decimal places.

$$3 \log 5 = \log 125 =$$

$$2 \log 7 = \log 49 =$$

$$4 \log 2 = \log 16 =$$

$$\boxed{Power Law:} \log_c M^P =$$

Example: Write 2 log 1000 as a logarithm without a coefficient.

In summary

Product Law : $\log_c MN = \log_c M + \log_c N$ Quotient Law : $\log_c \frac{M}{N} = \log_c M - \log_c N$ Power Law : $\log_c M^P = P \log_c M$

<u>Note</u>: These laws work for a logarithm of any base!

<u>Page 395 Example 1</u> – Write each expression in terms of individual logarithms of x, y, and z.

1. $\log_5 \frac{xy}{z}$ 2. $\log_7 \sqrt[3]{x}$

3.
$$\log_6 \frac{1}{x^2}$$
 4. $\log \frac{x^3}{y\sqrt{z}}$

Page 396 Example 2 – Use laws of logarithms to simplify and evaluate each expression.

1. $\log_6 8 + \log_6 9 - \log_6 2$ 2. $\log_7 7\sqrt{7}$

3. $2\log_2 12 - \left(\log_2 6 + \frac{1}{3}\log_2 27\right)$

<u>Assignment:</u> Handout #1 – 23, 28 – 41

Example 3 (Page 397) – Write as a single logarithm in simplest form. State *all restrictions* (logarithmic and rational restrictions) on the variable. Remember: bases must be positive and \neq 1; can't take the log of a negative number.

1.
$$\log_7 x^2 + \log_7 x - \frac{5\log_7 x}{2}$$

2. $\log_5(2x-2) - \log_5(x^2+2x-3)$

<u>Assignment</u>: Page 400 #1 – 3, 8 – 12

Logarithmic Equation – an equation containing the logarithm of a variable.

Logarithmic Equations can be solved graphically or algebraically.

Example: Solve $\log_6(2x-1) = \log_6 11$ graphically.

Graph $y = \log_6(2x-1)$ and $y = \log_6 11$ on the same set of axes and find the x-coordinate of the point of intersection. (see graph below)

A. Solving Logarithmic Equations

• If each side contains the same log base, then the expressions are equal. (Write as single logarithms first)

a)
$$\log_6(2x-1) = \log_6 11$$

b) $\log_7 x + \log_7 4 = \log_7 12$

• If just one side contains a "log", change to exponential form and solve.

c)
$$\log_3(x^2 - 8x)^5 = 10$$

• Combine and isolate the **logarithmic terms**. Apply appropriate law of logarithms.

d)
$$\log_2(x-6) = 3 - \log_2(x-4)$$

B. Solving Exponential Equations Using Logarithms

• Take the common log of both sides and use **laws of logarithms** to isolate your variable; then solve with your calculator.

a)
$$2^x = 2500$$
 b) $8(3^{2x}) = 568$

c)
$$5^{x-3} = 1700$$
 d) $6^{3x+1} = 8^{x+3}$

Assignment: Page 412 #1, 2, 4, 5 (Day 1) Page 412 #7ab, 8acd, 9, 11, 13, 15 (Day 2)