8.1 Understanding Logarithms (Day 1)

Recall: to find the inverse of a function or relation, interchange the x and y values. The graphs of inverse functions/relations are reflections of each other in the line $y=x$.

$\log _{c} x=y$ is the inverse of the exponential function $c^{x}=y$. If you graph $y=c^{x}$ and then reflect it in the line $y=x$, you will get $y=\log _{c} x$. $(\mathrm{c}>0$ and $\mathrm{c} \neq 1)$

A common logarithm is a logarithm with base 10. In this case, we don't write the base of the logarithm. The log button on a calculator is for common logarithms.

- $\log _{10} 100=2$ can be written as

Complete:

Exponential	Logarithmic
$7^{4}=2401$	
$5^{2}=25$	
	$\log _{5} 78125=7$
	$\log _{\frac{1}{2}} 16=-4$
$p^{q}=r$	
	$\log _{j} h=m$

Evaluate:

a) $\log _{2} 8$
b) $\log _{5} 625$
c) $\log _{6} 1$
d) $\log _{2} \sqrt{8}$
e) $\log _{2} 32$
f) $\log 1000000$
g) $\log _{9} \sqrt[5]{81}$
h) $\log _{3} 9 \sqrt{3}$

Restrictions on the value of ' c '

A logarithmic function is in the form $y=\log _{c} x$, where $c>0$ and $c \neq 1$. Why does ' c ' have these restrictions? (Hint: write in exponential form)

Helpful Hints

- $\log _{c} 1=0$ since in exponential form $c^{0}=1$.
- $\log _{c} c=1$ since in exponential form $c^{1}=c$
- $\log _{c} c^{x}=x$ since in exponential form $c^{x}=c^{x}$
- $c^{\log _{c} x}=x, x>0$, since in logarithmic form $\log _{c} x=\log _{c} x$

Page 375 - Your Turn. Determine the value of x. Write in exponential form first.

1. $\log _{4} x=-2$
2. $\log _{16} x=-\frac{1}{4}$
3. $\log _{x} 9=\frac{2}{3}$

Recall:

- To find the inverse of a function, interchange x and y values.

Example

State the equation of the inverse of $f(x)=3^{x}$. State your answer in exponential and logarithmic form.

Sketch the graph of $f(x)=3^{x}$ and its inverse. Use a table of values for both. Note the relationship between the two.

Determine the following characteristics of the inverse graph:

Domain:

Range:
x-intercept, if it exists
y-intercept, if it exists
equations of any asymptotes

Assignment: Page 380 \#1, 8, 10, 14b, 21 (try 24)

Given the base function $y=\log _{c} x$, multiple transformations can be applied using the general transformation model $y=a \log _{c}(b(x-h))+k$. The mapping notation for multiple transformations would be $(x, y) \rightarrow($ \qquad , \qquad).

Example: The graphs below show how $y=\log x$ is transformed into $y=a \log (b(x-h))+k$ by changing one parameter at a time. The effect on one key point is shown at each step. For each graph, explain the effect of the parameter introduced and write the equation of the transformed function.

Graph 1:

Graph 3:

Graph 2:

Graph 4:

Page 384 - Example 1

Use transformations to sketch: $y=\log _{3}(x+9)+2$

Assignment: Page 389 \#1, 2

Examples

1. Use transformations to sketch the graph of $y=\log (x-10)-1$.
b) Identify the following characteristics of the graph of the function.
i) the equation of the asymptote
iii) the y-intercept, if it exists
ii) the domain and the range
iv) the x-intercept, if it exists
2. a) Determine the parameters and use mapping notation to sketch the graph of $y=2 \log _{3}(-x+1)$.

b) Identify the following characteristics of the graph of the function.
i) the equation of the asymptote
iii) the y-intercept, if it exists
ii) the domain and the range
iv) the x-intercept, if it exists
3. Your Turn (Page388). The graph at right was generated by stretching and reflecting the graph of $y=\log _{4} x$. Write the equation of the second function on the graph.

4. Only a horizontal translation (or \qquad) has been applied to the graph of $y=\log _{4} x$ so that the graph of the transformed image passes through the point $(6,2)$. Determine the equation of the transformed image.

Application (Page 389 - Your Turn)

5. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, F, of flower species that a butterfly feeds on and the number of butterflies observed, B, can be modelled by the function $F=-2.641+8.958 \log B$.
a) How many flower species would you expect to find if you observed 100 butterflies?
b) Predict the number of butterfly observations in a region with 25 flowers species.

Assignment: Page 390 \#4, 6, 8 - 10, 12, 13

Given the base function $y=\log _{c} x$, multiple transformations can be applied using the general transformation model $y=a \log _{c}(b(x-h))+k$. The mapping notation for multiple transformations would be $(x, y) \rightarrow(\longrightarrow$, , -).

1. Given the base function $f(x)=\log _{3} x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?
2. Given the base function $f(x)=\log _{3} x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?
3. Given the base function $f(x)=\log _{3} x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?
4. Given the base function $f(x)=\log _{3} x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?

Page 384 - Example 1

Use transformations to sketch: $y=\log _{3}(x+9)+2$

Assignment: Page 389 \#1, 2

Examples

1. Use transformations to sketch the graph of $y=\log (x-10)-1$.
b) Identify the following characteristics of the graph of the function.

i) the equation of the asymptote
iii) the y-intercept, if it exists
ii) the domain and the range
iv) the x-intercept, if it exists
2. a) Determine the parameters and use mapping notation to sketch the graph of $y=2 \log _{3}(-x+1)$.

b) Identify the following characteristics of the graph of the function.
i) the equation of the asymptote
iii) the y-intercept, if it exists
ii) the domain and the range
iv) the x-intercept, if it exists

See Example 3 (page 387). Determining the equation of a function, given its graph.
3. Your Turn (Page388). The graph at right was generated by stretching and reflecting the graph of $y=\log _{4} x$. Write the equation of the second function on the graph.

4. Only a horizontal translation (or \qquad has been applied to the graph of $y=\log _{4} x$ so that the graph of the transformed image passes through the point (6,2). Determine the equation of the transformed image.

Application (Page 389 - Your Turn)

5. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, F, of flower species that a butterfly feeds on and the number of butterflies observed, B, can be modelled by the function $F=-2.641+8.958 \log B$.
a) How many flower species would you expect to find if you observed 100 butterflies?
b) Predict the number of butterfly observations in a region with 25 flowers species.

8.2 - Transformations of Logarithmic Functions

In section 8.1, you were introduced to exponential functions which are written in the form $y=\log _{c} x$, where $c>1$ and $c \neq 1$.

- What are the characteristics of the base function when $c>1$?
- What are the characteristics of the base function when $0<c<1$?
- Is there a relationship between the graphs of the first group and the second group? Why does this happen?

Investigate:

In every chapter, we have studied specific base functions then applied to three types of transformations:
\qquad , and \qquad . In this lesson, we will apply these transformations to the new base function, $y=\log _{c} x$.

1. Given the base function $f(x)=\log _{3} x$, what of transformation occurred to produce the second graph?

What characteristics changed as a result of this
 transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?
2. Given the base function $f(x)=\log _{3} x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?
3. Given the base function $f(x)=\log _{3} x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this
 transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?
4. Given the base function $f(x)=\log _{3} x$, what sort of transformation occurred to produce the second graph?

What characteristics changed as a result of this transformation?

What parameter produces this transformation? What is its value?

What is the equation of the second function?
Reminder: Given base function or parent function $y=\log _{c} x$, multiple transformations can be applied using the general transformation model $y=a \log _{c}(b(x-h))+k$. The mapping notation for multiple transformations would be: $(x, y) \rightarrow($ \qquad ,

Examples:

1a) Use transformations to sketch the graph of $y=\log (x-10)-1$.
b) Identify the following characteristics of the graph of the function.

i) the equation of the asymptote
ii) the domain and the range
iii) the y-intercept, if it exists
iv) the x-intercept, if it exists

2a) Use transformations to sketch the graph of $y=2 \log _{3}(-x+1)$.
b) Identify the following characteristics of the graph of the function.

i) the equation of the asymptote
ii) the domain and the range
iii) the y-intercept, if it exists
iv) the x-intercept, if it exists
3. Given the base function $y=\log _{4} 4 x$, write the equation of the function on the graph.

second
4. Only a horizontal translation has been applied to the graph of $y=\log _{4} x$ so that the graph of the transformed image passes through the point $(6,2)$. Determine the equation of the transformed image.

Application:

5. There is a logarithmic relationship between butterflies and flowers. In one study, scientists found that the relationship between the number, F, of flower species that a butterfly feeds on and the number of butterflies observed, B, can be modelled by the function $F=-2.641+8.958 \log B$.

Predict the number of butterfly observations in a region with 25 flowers.

8.3 Laws of Logarithms (Day 1)

Laws of Logarithms

1. Show that $\log (1000 \times 100) \neq(\log 1000)(\log 100)$. Find the value of both sides using a calculator.

Use a calculator to find the approximate value of each expression to four decimal places.

$$
\begin{array}{ll}
\log 6+\log 5= & \log 30= \\
\log 11+\log 9= & \log 99= \\
\log 7+\log 3= & \log 21=
\end{array}
$$

Product Law: $\log _{c} M N=$

Example: Write $\log 1000+\log 100$ as a single logarithm.
2. Show that $\log \frac{1000}{100} \neq \frac{\log 1000}{\log 100}$. Find the value of both sides using a calculator.

Use a calculator to find the approximate value of each expression, to four decimal places.

$$
\begin{array}{ll}
\log 48-\log 4= & \log 12= \\
\log 72-\log 2= & \log 36= \\
\log 35-\log 5= & \log 7=
\end{array}
$$

Quotient Law: $\log _{c} \frac{M}{N}=$

Example: Write $\log 1000-\log 100$ as a single logarithm.
3. Show that $\log 1000^{2} \neq(\log 1000)^{2}$. Find the value of both sides using a calculator.

Use a calculator to find the approximate value of each expression, to four decimal places.

$3 \log 5=$	$\log 125=$
$2 \log 7=$	$\log 49=$
$4 \log 2=$	$\log 16=$

Power Law: $\log _{c} M^{P}=$

Example: Write $2 \log 1000$ as a logarithm without a coefficient.

In summary

Product Law : $\log _{c} M N=\log _{c} M+\log _{c} N$
Quotient Law : $\log _{c} \frac{M}{N}=\log _{c} M-\log _{c} N$
Power Law : $\log _{c} M^{P}=P \log _{c} M$

Note: These laws work for a logarithm of any base!

Page 395 Example 1 - Write each expression in terms of individual logarithms of x, y, and z .

1. $\log _{5} \frac{x y}{z}$
2. $\log _{7} \sqrt[3]{x}$
3. $\log _{6} \frac{1}{x^{2}}$
4. $\log \frac{x^{3}}{y \sqrt{z}}$

Page 396 Example 2 - Use laws of logarithms to simplify and evaluate each expression.

1. $\log _{6} 8+\log _{6} 9-\log _{6} 2$
2. $\log _{7} 7 \sqrt{7}$
3. $2 \log _{2} 12-\left(\log _{2} 6+\frac{1}{3} \log _{2} 27\right)$

Example 3 (Page 397) - Write as a single logarithm in simplest form. State all restrictions (logarithmic and rational restrictions) on the variable. Remember: bases must be positive and $\neq 1$; can't take the \log of a negative number.

1. $\log _{7} x^{2}+\log _{7} x-\frac{5 \log _{7} x}{2}$
2. $\log _{5}(2 x-2)-\log _{5}\left(x^{2}+2 x-3\right)$

Assignment: Page $400 \# 1-3,8-12$

Logarithmic Equation - an equation containing the logarithm of a variable.
Logarithmic Equations can be solved graphically or algebraically.
Example: Solve $\log _{6}(2 x-1)=\log _{6} 11$ graphically.
Graph $y=\log _{6}(2 x-1)$ and $y=\log _{6} 11$ on the same set of axes and find the x-coordinate of the point of intersection. (see graph below)

The point of intersection is ($6,1.33829$) so
ss $=\{6\}$

Given that $c, L, R>0$ and $\mathrm{c} \neq 1$

- If $\log _{c} L=\log _{c} R$, then $L=R$
- If $L=R$, then $\log _{c} L=\log _{c} R$
- $\log _{c} L=R$ can be written as $L=c^{R}$
- substitute root into original equation to check if all logarithms are defined.

A. Solving Logarithmic Equations

- If each side contains the same log base, then the expressions are equal. (Write as single logarithms first)
a) $\log _{6}(2 x-1)=\log _{6} 11$
b) $\log _{7} x+\log _{7} 4=\log _{7} 12$
- If just one side contains a "log", change to exponential form and solve.
c) $\log _{3}\left(x^{2}-8 x\right)^{5}=10$
- Combine and isolate the logarithmic terms. Apply appropriate law of logarithms.
d) $\log _{2}(x-6)=3-\log _{2}(x-4)$

B. Solving Exponential Equations Using Logarithms

- Take the common log of both sides and use laws of logarithms to isolate your variable; then solve with your calculator.
a) $2^{x}=2500$
b) $8\left(3^{2 x}\right)=568$
c) $5^{x-3}=1700$
d) $6^{3 x+1}=8^{x+3}$

Assignment: Page 412 \#1, 2, 4, 5 (Day 1)
Page 412 \#7ab, 8acd, 9, 11, 13, 15 (Day 2)

