Pre-Calculus

7.1 Characteristics of Exponential Functions (Day 1)

An **exponential function** is written in the form $y = c^x$, where c > 0.

• $y = c^x$, c > 1 What do you notice about these curves?

Example 1 (page 336) See graphs on other side.

a)
$$y = 4^x$$
.b) $y = \left(\frac{1}{2}\right)^x$.Domain:Domain:Range:Range:x-intercept:x-intercept:y-intercept:y-intercept:increasing or decreasing?Increasing or decreasing?Horizontal asymptote:Horizontal asymptote:

<u>Summary</u>: For the graph $y = c^x$

- When c > 1 the graph of $y = c^x$ is _____
- When 0 < c < 1 the graph of $y = c^x$ is _____
- domain is
- range is
- y-intercept
- x-intercept
- horizontal asymptote

Example 2 (page 338) Writing the function when given its graph.

- Write down key points (table of values or ordered pairs) that are easy to read on the curve
- Look for a pattern in the ordered pairs. Ask yourself "As x increases by 1, the value of y increases/decreases by what factor?" Choose a point other than (0, 1) to verify your decision.

Your Turn (Page 339) What function of the form $y = c^x$ can be used to describe the graph shown?

Assignment: Page 342 #1-5

Pre-Calculus 7.1 Characteristics of Exponential Functions - Applications (Day 2)

- Exponential growth is an *increasing* pattern of values that can be modeled by a function of the form $y = c^x$, where c > 1. Can you think of an example of exponential growth?
- Exponential decay is a *decreasing* pattern of values that can be modeled by a function of the form $y = c^x$, where 0 < c < 1. Can you think of an example of exponential decay?
- Half-life is the length of time for an unstable element to spontaneously decay to one half its original mass. Can you think of an example of half-life?

Page 340 – Example 2 A radioactive sample of radium (Ra-225) has a half-life of 15 days. The mass, *m*, in grams, of Ra-225 remaining over time, *t*, in 15-day intervals, can be modeled using the exponential graph shown on page 340

a) What is the initial mass of Ra-225 in the sample?

What value does the mass of Ra-225 remaining approach as time passes?

b) What is the domain of this function?

What is the range of this function?

c) Write the exponential decay model that relates the *mass* of Ra-225 remaining to *time*, in 15-day intervals. (Write the equation for the function)

d) Estimate how many days it would take for Ra-225 to decay to $\frac{1}{30}$ of its original mass. (Use the graph on page 340)

<u>Homework</u>

1. The number of rabbits, y, in a certain population after t months is modeled over a short period of time by the function $y = 20(2)^{t}$.

- a) Determine the initial number of rabbits, that is the number of rabbits when t = 0.
- b) Determine the number of rabbits after 4 months.
- c) Determine the number of rabbits after 2 years.
- d) Why is this function not an appropriate model for the population growth over a long period of time?
- e) Is this an example of exponential growth or exponential decay?
- 2. The value, y, of a car after t years is modeled by the function $y = 25\ 000(0.85)^t$.
 - a) Determine the initial value of the car, that is the value when t = 0.
 - b) Determine the value of the car after 1 year.
 - c) Determine the value of the car after 5 years.
 - d) Determine the value of the car after 30 years.
 - e) What factors might cause this function to not be a good model for the value of the car over a long period of time?
 - f) Is this an example of exponential growth or exponential decay?

Answers

1. a) 20 b) 320 c) 335 544 320 d) Answers will vary – biology e) exponential growth 2. a) \$25 000 b) \$21 250 c) 11 092.63 d) \$190.77 e) Collector's item f) exponential decay

<u>Assignment</u>: Page 343 #6 – 8

Pre-Calculus 30 7.2 Transformations of Exponential Functions

In section 7.1, you were introduced to exponential functions which are written in the form $y = c^x$, where *c*, the base, is a real number, strictly positive, and not equal to 1.

• What are the characteristics of the base function when c > 1? Sketch an example.

• What are the characteristics of the base function when 0 < c < 1? Sketch an example.

Investigate:

Transformations can alter the equation or graph of a function. Describe the general roles of the parameters a, b, h and k.

а:		
b:		
h:		

k:

Given the base function $y = c^x$, multiple transformations can be applied using the general transformation model

$y = a(c)^{b(x-n)} + k$

The mapping notation for multiple transformations would be: $(x, y) \rightarrow ($ ______, ____)

Consider the graphs of the following sets of functions:

Given the base function $f(x) = 3^x$, what sort of transformation occurred to produce the other two graphs?

What is the parameter?

What is the value of this parameter in:

 $g(x) = 3^x + 2?$

$$h(x) = 3^x - 4?$$

On the graph, label the y-intercepts.

- $g(x) = 2^{x+1}$?
- $h(x) = 2^{x-3}$?

On the graph, label the

y-intercept of $f(x) = 2^x$

Where has this point moved on the other two graphs? Label these points on the graph.

Describe the roles of the parameters *h* and *k* in the functions of the form $y = a(c)^{b(x-h)} + k$.

- $h(x) = \frac{3}{4} \left(\frac{1}{2}\right)^x ?$
- $g(x) = 3\left(\frac{1}{2}\right)^x$?
- $k(x) = -\frac{1}{3}\left(\frac{1}{2}\right)^x$?
- $j(x) = -4\left(\frac{1}{2}\right)^x$?

Describe the roles of the parameters *a* and *b* in the functions of the form $y = a(c)^{b(x-h)} + k$.

Examples:

1. Transform the graph of $y = 4^x$ to sketch the graph of $y = 4^{-2(x+5)} - 3$. Describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts.

ļ		 	 	 		 			

2. **Describe** how each parameter in exponential function $y = 0.5(3)^{-2(x+4)} + 7$ transforms the graph of the original function, $y = 3^x$. Do not sketch the graph.

See Example 2 (page 352)

Application:

- The radioactive element americium (Am) is used in household smoke detectors. Am-241 has a half-life of approximately 432 years. The average smoke detector contains 200 µg of Am-241.
 - a) What is the transformed exponential function that models the graph showing the radioactive decay of 200 µg of Am-241?

b) Identify how each of the parameters of the function relates to the transformed graph.

Assignment: Page 354 #1 – 7, 9, 11, 12

Pre-Calculus 30 7.3 Solving Exponential Equations

Exponential equations - an equation that has a variable in the exponent

Substitute the value of *n* in to each exponential expression. Then rewrite each expression as an equivalent expression with base 2

n	$\left(\frac{1}{2}\right)^n$	2 ⁿ	4 ⁿ
-2			
-1			
0			
1			
2			

Example – Rewrite the following with a base of 2

a) 32 b) 16³ c) (1/64)^{1/3}

Example – Rewrite the following with a base of 3

a) 27⁵ b)
$$\sqrt[3]{243}$$
 c) $\left(\frac{\sqrt{3}}{81}\right)^{-3}$

It is often helpful to rewrite exponential expressions using a different base since:

If $c^x = c^y$ then x = y (for $c \neq -1, 0, 1$)

Example: Solve

a) $4^{2x} = 8^{x+1}$

b) $64^{4x} = 16^{x+5}$

c) $9^{x-7} = 27^{2x-9}$

d)
$$8^{x-2} = (1/4)^{x+3}$$

Compound Interest:

Example - Page 365 #13 ab

<u>Assignment</u>: Solve the following exponential equations below

Page 364 #2, 4, 5, 11ab, 12ab, 14

a)
$$2^x = 32$$
 b) $4^{x-2} = 8^4$ c) $2^{x-5} = 4$ d) $4^{1-x^2} = 8^x$

e)
$$2^{x^2} = (16^{x-1})(2^x)$$
 f) $4^{x-1} = (\frac{1}{2})^{4x-1}$ g) $9^{2x} = \sqrt{27}$ h) $13^{x^2-4} = 1$

<u>Answers</u>: a) {5} b) {8} c) {7} d) {½, -2} e) {1, 4} f) {½} g) {3/8} h) {2, -2}