An exponential function is written in the form $y=c^{x}$, where $c>0$.

- $y=c^{x}, c>1 \quad$ What do you notice about these curves?

- $y=c^{x}, 0<c<1$

What do you notice about these curves?

Example 1 (page 336) See graphs on other side.
a) $y=4^{x}$.
b) $y=\left(\frac{1}{2}\right)^{x}$.

Domain:
Range:
x-intercept:
y-intercept:
increasing or decreasing?
Horizontal asymptote:

Domain:
Range:
x-intercept:
y-intercept:
Increasing or decreasing?
Horizontal asymptote:

Summary: For the graph $y=c^{x}$

- When $c>1$ the graph of $y=c^{x}$ is
- When $0<c<1$ the graph of $y=c^{x}$ is
- domain is
- range is
- y-intercept
- x-intercept
- horizontal asymptote

Example 2 (page 338) Writing the function when given its graph.

- Write down key points (table of values or ordered pairs) that are easy to read on the curve
- Look for a pattern in the ordered pairs. Ask yourself "As x increases by 1 , the value of y increases/decreases by what factor?" Choose a point other than $(0,1)$ to verify your decision.

Your Turn (Page 339) What function of the form $y=c^{x}$ can be used to describe the graph shown?

7.1 Characteristics of Exponential Functions - Applications (Day 2)

- Exponential growth is an increasing pattern of values that can be modeled by a function of the form $y=c^{x}$, where $c>1$. Can you think of an example of exponential growth?
- Exponential decay is a decreasing pattern of values that can be modeled by a function of the form $y=c^{x}$, where $0<c<1$. Can you think of an example of exponential decay?
- Half-life is the length of time for an unstable element to spontaneously decay to one half its original mass. Can you think of an example of half-life?

Page 340 - Example 2 A radioactive sample of radium (Ra-225) has a half-life of 15 days. The mass, m, in grams, of Ra-225 remaining over time, t, in 15-day intervals, can be modeled using the exponential graph shown on page 340
a) What is the initial mass of Ra-225 in the sample?

What value does the mass of Ra-225 remaining approach as time passes?
b) What is the domain of this function?

What is the range of this function?
c) Write the exponential decay model that relates the mass of Ra-225 remaining to time, in 15-day intervals. (Write the equation for the function)
d) Estimate how many days it would take for Ra- 225 to decay to $\frac{1}{30}$ of its original mass. (Use the graph on page 340)

Homework

1. The number of rabbits, y, in a certain population after t months is modeled over a short period of time by the function $y=20(2)^{t}$.
a) Determine the initial number of rabbits, that is the number of rabbits when $t=0$.
b) Determine the number of rabbits after 4 months.
c) Determine the number of rabbits after 2 years.
d) Why is this function not an appropriate model for the population growth over a long period of time?
e) Is this an example of exponential growth or exponential decay?
2. The value, y, of a car after t years is modeled by the function $y=25000(0.85)^{t}$.
a) Determine the initial value of the car, that is the value when $t=0$.
b) Determine the value of the car after 1 year.
c) Determine the value of the car after 5 years.
d) Determine the value of the car after 30 years.
e) What factors might cause this function to not be a good model for the value of the car over a long period of time?
f) Is this an example of exponential growth or exponential decay?

Answers

1. a) 20
b) 320
c) 335544320
d) Answers will vary - biology e) exponential growth
2. a) $\$ 25000$
b) $\$ 21250$
c) 11092.63
d) $\$ 190.77$
e) Collector's item f) exponential decay

Assignment: Page 343 \#6-8

In section 7.1, you were introduced to exponential functions which are written in the form $y=c^{x}$, where c, the base, is a real number, strictly positive, and not equal to 1 .

- What are the characteristics of the base function when $c>1$? Sketch an example.
- What are the characteristics of the base function when $0<c<1$? Sketch an example.

Investigate:

Transformations can alter the equation or graph of a function. Describe the general roles of the parameters a, b, h and k.
a :
b :
h:
k:

Given the base function $y=c^{x}$, multiple transformations can be applied using the general transformation model $y=a(c)^{b(x-h)}+k$.

The mapping notation for multiple transformations would be: $(x, y) \rightarrow($ \qquad ,

Consider the graphs of the following sets of functions:

Given the base function $f(x)=3^{x}$, what sort of transformation occurred to produce the other two graphs?

What is the parameter?

What is the value of this parameter
 in:
$g(x)=3^{x}+2$?
$h(x)=3^{x}-4$?

On the graph, label the y-intercepts.

Given the base function $f(x)=2^{x}$, what sort of transformation occurred to produce the other two graphs?

What is the parameter?

What is the value of this parameter
 in:
$g(x)=2^{x+1} ?$
$h(x)=2^{x-3}$?

On the graph, label the
y-intercept of $f(x)=2^{x}$
Where has this point moved on the other two graphs? Label these points on the graph.

Describe the roles of the parameters h and k in the functions of the form $y=a(c)^{b(x-h)}+k$.

Given the base function
$f(x)=\left(\frac{1}{2}\right)^{x}$, what sort of transformation occurred to produce the other two graphs?

What is the parameter?

What is the value of this parameter in:
$h(x)=\frac{3}{4}\left(\frac{1}{2}\right)^{x} ?$
$g(x)=3\left(\frac{1}{2}\right)^{x} ?$
$k(x)=-\frac{1}{3}\left(\frac{1}{2}\right)^{x} ?$
$j(x)=-4\left(\frac{1}{2}\right)^{x} ?$

Given the base function $f(x)=2^{x}$, what sort of transformation occurred to produce the other two graphs?

What is the parameter?

What is the value of this parameter in:

$k(x)=2^{-\frac{2}{3} x}$?
$j(x)=2^{-2 x}$?
$g(x)=2^{3 x}$?
$h(x)=2^{\frac{1}{3} x} ?$

Describe the roles of the parameters a and b in the functions of the form $y=a(c)^{b(x-h)}+k$.

Examples:

1. Transform the graph of $y=4^{x}$ to sketch the graph of $y=4^{-2(x+5)}-3$. Describe the effects on the domain, range, equation of the horizontal asymptote, and intercepts.

2. Describe how each parameter in exponential function $y=0.5(3)^{-2(x+4)}+7$ transforms the graph of the original function, $y=3^{x}$. Do not sketch the graph.

Application:

3. The radioactive element americium (Am) is used in household smoke detectors. Am-241 has a half-life of approximately 432 years. The average smoke detector contains $200 \mu \mathrm{~g}$ of Am-241.
a) What is the transformed exponential function that models the graph showing the radioactive decay of $200 \mu \mathrm{~g}$ of $\mathrm{Am}-241$?

b) Identify how each of the parameters of the function relates to the transformed graph.

Assignment: Page 354 \#1-7, 9, 11, 12

Exponential equations - an equation that has a variable in the exponent

Substitute the value of n in to each exponential expression. Then rewrite each expression as an equivalent expression with base 2

	$\left(\frac{1}{2}\right)^{n}$	2^{n}	4^{n}
n			
-2			
-1			
0			
2			
2			

Example - Rewrite the following with a base of 2
a) 32
b) 16^{3}
c) $(1 / 64)^{1 / 3}$

Example - Rewrite the following with a base of 3
a) 27^{5}
b) $\sqrt[3]{243}$
c) $\left(\frac{\sqrt{3}}{81}\right)^{-3}$

It is often helpful to rewrite exponential expressions using a different base since:

If $c^{x}=c^{y}$ then $\boldsymbol{x}=\boldsymbol{y}$ (for $c \neq-1,0,1$)

Example: Solve
a) $4^{2 x}=8^{x+1}$
b) $64^{4 x}=16^{x+5}$
c) $9^{x-7}=27^{2 x-9}$
d) $8^{x-2}=(1 / 4)^{x+3}$

Compound Interest:

$$
A=P(1+i)^{n}
$$

$A=$ Amount of money at the end of the investment
$P=$ Principal amount deposited (or invested)
$\mathrm{i}=$ interest rate per compounding period (as a decimal)
$\mathrm{n}=$ number of compounding periods

Example - Page 365 \#13 ab

Assignment: Solve the following exponential equations below
Page 364 \#2, 4, 5, 11ab, 12ab, 14
a) $2^{x}=32$
b) $4^{x-2}=8^{4}$
c) $2^{x-5}=4$
d) $4^{1-x^{2}}=8^{x}$
e) $2^{x^{2}}=\left(16^{x-1}\right)\left(2^{x}\right) \quad$ f) $4^{x-1}=\left(\frac{1}{2}\right)^{4 x-1}$
g) $9^{2 x}=\sqrt{27}$
h) $13^{x^{2}-4}=1$

Answers:
a) $\{5\}$ b) $\{8\}$
c) $\{7\}$
d) $\{1 / 2,-2\}$
e) $\{1,4\}$
f) $\{1 / 2\} \quad$ g) $\{3 / 8\}$
h) $\{2,-2\}$

