Angles can be measured in degrees or radians. Angle measures without units are considered to be in radians.

Radian: One radian is the measure of the central angle subtended in a circle by an arc equal in length to the radius of the circle.
(1 radian \approx \qquad degrees)

One full rotation of a circle is \qquad degrees or \qquad radians

One half rotation of a circle is \qquad degrees or \qquad radians

To convert degrees to radians, since $\frac{2 \pi}{360^{\circ}}=\frac{\pi}{180^{\circ}}=1$, multiply by $\frac{\pi}{180}$

To convert radians to degrees, since $\frac{360^{\circ}}{2 \pi}=\frac{180^{\circ}}{\pi}=1$, multiply by $\frac{180}{\pi}$

Angles in Standard Position

- vertex is at \qquad
- initial arm lies on the \qquad x -axis
- positive angle rotates \qquad
- negative angle rotates \qquad

Example: Convert each degree measure to radians (in reduced fractional form) and each radian measure to degrees. Draw each angle in standard position.
a) $150^{\circ}=$ \qquad radians
b) $-270^{\circ}=$ \qquad radians
c) $\frac{7 \pi}{6}=$ \qquad degrees
d) -1.2 radians $=$ \qquad degrees

Coterminal Angles - angles in standard position with the same terminal arm. They may be measured in degrees or radians.

Example: Determine one positive and one negative angle that is coterminal with each angle. Draw the angles.
a) 40°
b) -210^{0}
c) $\frac{\pi}{3}$

In general, angles coterminal with any angle θ can be described by:

$$
\theta \pm\left(360^{\circ} n \text { or } \theta \pm 2 \pi n \text { (} \mathrm{n}\right. \text { is a natural number) }
$$

Example: Write an expression for all possible angles coterminal with each given angle. Identify the angles that are coterminal that satisfy $-360^{\circ} \leq \theta<360^{\circ}$ or $-2 \pi \leq \theta<2 \pi$
a) 110^{0}
b) -500°
c) $\frac{9 \pi}{4}$

Assignment: Page 175 \#1-5 (ace), 6 bde, 7abc, 9ab, 11abd

4.1 Arc Length of a Circle

All arcs that subtend angle θ have the same central angle, but have different arc lengths depending on the radius of the circle. The arc length is proportional to the radius.
$\frac{\text { arc length }}{\text { circumference }}=\frac{\text { central angle }}{\text { full rotation }}$
$\frac{\text { area of sector }}{\text { area of circle }}=\frac{\text { sector angle }}{2 \pi}$
Consider the 2 concentric circles to the right with center at 0 . The radius of the smaller circle is 1 and the radius of the larger circle is r. Let x represent the arc length of the smaller circle and a is the arc length of the larger circle.

Using proportions:

$$
\begin{array}{ll}
\frac{a}{x}=\frac{r}{1} & \frac{x}{2 \pi r}=\frac{\theta}{2 \pi} \\
a=x r & x=\frac{\theta(2 \pi(1))}{2 \pi} \quad \text { since radius }=1 \\
& x=\theta
\end{array}
$$

So $\quad a=\theta r$

$$
\begin{array}{ll}
\boldsymbol{a}=\boldsymbol{\theta} r & \text { where } a=\text { arc length, } r=\text { radius, } \theta=\text { angle measured in radians } \\
(a \text { and } r \text { must be in the same units) }
\end{array}
$$

Example 4: Page 173

Your Turn: Page 174

4.2 The Unit Circle (Day 1)

Unit Circle

- center at the origin
- radius of 1 unit
- equation of the unit circle is $x^{2}+y^{2}=1$

Your Turn - Page 182
Find the equation of the circle with center at the origin and a radius of 6 .

Page 183 - Example 2

Determine the coordinates for all points on the unit circle that satisfy the conditions. Draw a diagram.
a) x coordinate is $\frac{2}{3}$

b) y coordinate is $\frac{-1}{\sqrt{2}}$ and the point is in quadrant III

Assignment: Page 186 \# 1ad, 2ace, 3

4.2 The Unit Circle (Day 2)

In the unit circle $a=\theta r$ becomes $a=\theta$ since $r=1$. Therefore the central angle and its subtended arc have the same numerical value.

A. Multiples of $\pi / 3$ on the Unit Circle

B. Multiples of $\pi / 6$ on the Unit Circle

Summary:

$$
\begin{aligned}
& P\left(\frac{\pi}{3}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \\
& P\left(\frac{\pi}{4}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \\
& P\left(\frac{\pi}{6}\right)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)
\end{aligned}
$$

Look for patterns in the ordered pairs.
Note: If $P(\theta)=(a, b)$, then $P(\theta \pm 2 \pi)=$ If $P(\theta)=(a, b)$, then $P(\theta \pm \pi)=$ If $P(\theta)=(a, b)$, then $P\left(\theta \pm \frac{\pi}{2}\right)=$

Assignment: Page187 \#4-5 (acegi), 6, 9, 13, 19, C3

4.3 Trigonometric Ratios

Show how the coordinates of $P(\theta)$ can be represented by $(\cos \theta, \sin \theta)$ for any θ in the unit circle. (This is \#19 on page 190)

$$
\cos \theta=\frac{a d j}{h y p} \quad \sin \theta=\frac{o p p}{h y p}
$$

Reciprocal Trigonometric Ratios

$$
\csc \theta=\quad \sec \theta=\quad \cot \theta=
$$

Your Turn - Page 194

The point $B\left(-\frac{1}{3},-\frac{2 \sqrt{2}}{3}\right)$ lies at the intersection of the unit circle and the terminal arm of an angle θ in standard position.
a) Draw a diagram to model the situation.
b) Determine the values of the 6 trig ratios for θ. Express answers in lowest terms.

Exact Values for Trig Ratios

Exact values for trig ratios can be found using the $30^{\circ}-60^{\circ}-90^{\circ}$ and the $45^{\circ}-45^{\circ}-90^{\circ}$ triangles along with the reference angle. Recall that a reference angle (θ_{R}) is a positive acute angle formed between the terminal arm of an angle in standard position and the nearest x-axis. The sign (+ or -) will be determined by the quadrant in which the terminal arm lies (use "CAST" or "All Soup Turns Cold")

A trigonometric ratio has an exact value if the given angle has a reference angle of $30^{\circ}, 45^{\circ}$ or 60° (or is a quadrantal angle).

Example 2 - Page 194
Determine the exact value for each. Draw diagrams.
a) $\cos \frac{5 \pi}{6}$
b) $\sin \left(-\frac{4 \pi}{3}\right)$
c) $\sec 315^{\circ}$
d) $\cot 270^{\circ}$

Assignment: Page 201 \#1acegi, 3, 6, 9abcd

4.3 Trigonometric Ratios

Approximate Values of Trig Ratios

- use your calculator and set to "degrees" or "radians"
- to find the value of a reciprocal trig ratio $(\csc \theta, \sec \theta, \cot \theta)$, use the definition of reciprocal

Example 3 - Page 196
Give the approximate value of each trig ratio. Round answers to 4 decimal places.
a) $\tan \frac{7 \pi}{5}$
b) $\cos 260^{\circ}$
c) $\sin 4.2$
d) $\csc \left(-70^{0}\right)$

Finding Angles, Given Their Trigonometric Ratios

- Use the appropriate inverse trig function key $\left(\sin ^{-1}, \cos ^{-1}, \tan ^{-1}\right)$. Your calculator will give just one answer ($0^{\circ} \leq \theta \leq 90^{\circ}$)
- Use the reference angle in the correct quadrant to find the other angle(s)

If $\sin \theta=0.5$, find θ in the domain $0^{\circ} \leq \theta<360^{\circ}$. Give exact answer.

Example: Determine the measure of all angles that satisfy each of the following. Use diagrams to help you find all possible answers.
a) $\cos \theta=0.843$ in the domain $0^{\circ} \leq \theta<360^{\circ}$. Give approximate answer to the nearest tenth.
b) $\sin \theta=0$ in the domain $0^{\circ} \leq \theta \leq 180^{\circ}$. Give exact answers.
c) $\cot \theta=-2.777$ in the domain $-\pi \leq \theta<\pi$ (*radians). Give approximate answer to the nearest tenth.
d) $\csc \theta=-\frac{2}{\sqrt{2}}$ in the domain $-2 \pi \leq \theta<\pi$ (*radians). Give exact answers.

Example 5 (page 200)

The point $(-4,3)$ lies on the terminal arm of an angle θ in standard position. What is the exact value of each trig ratio for θ ?

Assignment: Page 202 \#2, 8, 10-12 (abc)

4.4 Introduction to Trig Equations

Interval Notation

- $0<\theta<\pi$ can be written as $\theta €(0, \pi)$
- $0 \leq \theta<\pi$ can be written as $\theta \in[0, \pi)$
- $0 \leq \theta \leq \pi$ can be written as $\theta \in[0, \pi]$

Examples - Solve each trig equation in the specified domain. Give solutions as exact values where possible. Otherwise, give approximate angle measures to the nearest thousandth of a radian.

1. $5 \sin \theta+2=1+3 \sin \theta, \quad 0 \leq \theta<2 \pi$
2. $3 \csc x-6=0, x \in\left[0^{\circ}, 360^{\circ}\right)$
3. $\tan ^{2} \theta-5 \tan \theta+4=0, \quad \theta \in[0,2 \pi)$
4. $\sin ^{2} x-1=0,0 \leq x<2 \pi$

Assignment: Page 211 \#1, 3ac, 4abf, 5ace, 6, 7, 8, 10

