4.1 Angles and Angle Measure

Angles can be measured in *degrees* or *radians*. Angle measures without units are considered to be in radians.

Radian: One radian is the measure of the central angle subtended in a circle by an arc equal in length to the radius of the circle. (1 radian \approx _____ degrees)

One full rotation of a circle is _____ degrees or _____ radians

One half rotation of a circle is _____ degrees or _____ radians

To convert degrees to radians, since $\frac{2\pi}{360^{\circ}} = \frac{\pi}{180^{\circ}} = 1$, multiply by $\frac{\pi}{180}$

To convert radians to degrees, since $\frac{360^{\circ}}{2\pi} = \frac{180^{\circ}}{\pi} = 1$, multiply by $\frac{180}{\pi}$

Angles in Standard Position

- vertex is at _____
- initial arm lies on the _____ x-axis
- positive angle rotates ______
- negative angle rotates ______

Example: Convert each degree measure to radians (in reduced fractional form) and each radian measure to degrees. Draw each angle in standard position.

a) 150[°] = _____ radians

b) -270[°] = _____ radians

c) $\frac{7\pi}{6}$ = ______ degrees

d) -1.2 radians = _____ degrees

<u>Coterminal Angles</u> – angles in standard position with the same terminal arm. They may be measured in degrees or radians.

Example: Determine one positive and one negative angle that is coterminal with each angle. Draw the angles.

a) 40° b) -210° c) $\frac{\pi}{3}$

In general, angles *coterminal* with any angle θ can be described by:

 $\theta \pm (360^{0})n$ or $\theta \pm 2\pi n$ (n is a natural number)

Example: Write an expression for all possible angles coterminal with each given angle. Identify the angles that are coterminal that satisfy $-360^{\circ} \le \theta < 360^{\circ}$ or $-2\pi \le \theta < 2\pi$

a)
$$110^{\circ}$$
 b) -500° c) $\frac{9\pi}{4}$

<u>Assignment</u>: Page 175 #1 – 5 (ace), 6 bde, 7abc, 9ab, 11abd

4.1 Arc Length of a Circle

All arcs that subtend angle θ have the same central angle, but have different arc lengths depending on the radius of the circle. The *arc length* is proportional to the radius.

arc length	central angle	area of sector	_ sector angle
circumference	full rotation	area of circle	2π

Consider the 2 concentric circles to the right with center at O. The radius of the smaller circle is 1 and the radius of the larger circle is r. Let *x* represent the arc length of the smaller circle and *a* is the arc length of the larger circle.

Using proportions:

 $\frac{a}{x} = \frac{r}{1} \qquad \qquad \frac{x}{2\pi r} = \frac{\theta}{2\pi}$

$$a = xr$$
 $x = \frac{\theta(2\pi(1))}{2\pi}$ since radius = 1

$$x = \theta$$

So $a = \theta r$

a = $ heta$ r	where $a = \operatorname{arc} \operatorname{length}, r = \operatorname{radius}, \theta = \operatorname{angle} \operatorname{measured} \operatorname{in} \operatorname{radians}$
	(<i>a</i> and <i>r</i> must be in the same units)

Example 4: Page 173

Your Turn: Page 174

<u>Assignment</u>: Page 176 #12 – 15, 17

4.2 The Unit Circle (Day 1)

Unit Circle

- center at the origin
- radius of 1 unit
- equation of the unit circle is $x^2 + y^2 = 1$

<u>Your Turn – Page 182</u>

Find the equation of the circle with center at the origin and a radius of 6.

Page 183 – Example 2

Determine the coordinates for all points on the unit circle that satisfy the conditions. Draw a diagram.

Assignment: Page 186 # 1ad, 2ace, 3

4.2 The Unit Circle (Day 2)

In the unit circle $a = \theta r$ becomes $a = \theta$ since r = 1. Therefore the central angle and its subtended arc have the same numerical value.

Look for patterns in the ordered pairs.

Note: If
$$P(\theta) = (a,b)$$
, then $P(\theta \pm 2\pi) =$
If $P(\theta) = (a,b)$, then $P(\theta \pm \pi) =$
If $P(\theta) = (a,b)$, then $P\left(\theta \pm \frac{\pi}{2}\right) =$

Assignment: Page187 #4 – 5 (acegi), 6, 9, 13, 19, C3

4.3 Trigonometric Ratios

Show how the coordinates of P(θ) can be represented by (cos θ , sin θ) for any θ in the unit circle. (This is #19 on page 190)

 $\csc \theta = \qquad \sec \theta = \qquad \cot \theta =$

<u>Your Turn – Page 194</u>

The point B $\left(-\frac{1}{3}, -\frac{2\sqrt{2}}{3}\right)$ lies at the intersection of the unit circle and the terminal arm of an angle θ in

standard position.

a) Draw a diagram to model the situation.

b) Determine the values of the 6 trig ratios for θ . Express answers in lowest terms.

Exact Values for Trig Ratios

Exact values for trig ratios can be found using the $30^{\circ} - 60^{\circ} - 90^{\circ}$ and the $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangles along with the reference angle. Recall that a reference angle (θ_R) is a **positive acute angle** formed between the terminal arm of an angle in standard position and the nearest *x*-axis. The sign (+ or –) will be determined by the quadrant in which the terminal arm lies (use "CAST" or "All Soup Turns Cold")

A trigonometric ratio has an exact value if the given angle has a reference angle of 30° , 45° or 60° (or is a quadrantal angle).

Example 2 – Page 194

Determine the exact value for each. Draw diagrams.

a)
$$\cos \frac{5\pi}{6}$$
 b) $\sin \left(-\frac{4\pi}{3}\right)$

c) $\sec 315^{\circ}$

d) $\cot 270^{\circ}$

Assignment: Page 201 #1acegi, 3, 6, 9abcd

4.3 Trigonometric Ratios

Approximate Values of Trig Ratios

- use your calculator and set to "degrees" or "radians"
- to find the value of a reciprocal trig ratio ($\csc \theta$, $\sec \theta$, $\cot \theta$), use the definition of reciprocal

Example 3 – Page 196

Give the approximate value of each trig ratio. Round answers to 4 decimal places.

a) $\tan \frac{7\pi}{5}$ b) $\cos 260^{\circ}$ c) $\sin 4.2$ d) $\csc (-70^{\circ})$

Finding Angles, Given Their Trigonometric Ratios

- Use the appropriate inverse trig function key (sin⁻¹, cos⁻¹, tan⁻¹). Your calculator will give just one answer ($0^0 \le \theta \le 90^0$)
- Use the reference angle in the correct quadrant to find the other angle(s)

If sin $\theta = 0.5$, find θ in the domain $0^0 \le \theta < 360^0$. Give exact answer.

Example: Determine the measure of all angles that satisfy each of the following. Use diagrams to help you find all possible answers.

a) $\cos \theta = 0.843$ in the domain $0^{\circ} \le \theta < 360^{\circ}$. Give approximate answer to the nearest tenth.

b) $\sin \theta = 0$ in the domain $0^{\circ} \le \theta \le 180^{\circ}$. Give exact answers.

c) $\cot \theta = -2.777$ in the domain $-\pi \le \theta < \pi$ (*radians). Give approximate answer to the nearest tenth.

d) $\csc \theta = -\frac{2}{\sqrt{2}}$ in the domain $-2\pi \le \theta < \pi$ (*radians). Give exact answers.

Example 5 (page 200) The point (-4, 3) lies on the terminal arm of an angle θ in standard position. What is the exact value of each trig ratio for θ ?

<u>Assignment:</u> Page 202 #2, 8, 10 – 12(abc)

Interval Notation

- $0 < \theta < \pi$ can be written as $\theta \in (0, \pi)$
- $0 \le \theta < \pi$ can be written as $\theta \in [0, \pi)$
- $0 \le \theta \le \pi$ can be written as $\theta \in [0, \pi]$

Examples – Solve each trig equation in the specified domain. Give solutions as exact values where possible. Otherwise, give approximate angle measures to the nearest thousandth of a radian.

1. $5\sin\theta + 2 = 1 + 3\sin\theta$, $0 \le \theta < 2\pi$

2. $3\csc x - 6 = 0, x \in [0^\circ, 360^\circ)$

4. $\sin^2 x - 1 = 0$, $0 \le x < 2\pi$

Assignment: Page 211 #1, 3ac, 4abf, 5ace, 6, 7, 8, 10