Pre-Calculus 30 2.1 Radical Functions and Transformations

Question: What falls faster... a feather or a hammer?

http://www.youtube.com/watch?feature=endscreen&NR=1&v=4mTsrRZEMwA (50 seconds)

Investigate – page 62

<u>Radical Function</u> – a function containing a radical with a variable in the radicand.

Example 1 – page 63

a)
$$y = \sqrt{x}$$

Restrictions?

Table of value – choose "nice" values

Domain:

Range:

b) $y = \sqrt{x - 2}$

Restrictions?

Domain:

Range:

c) $y = -3\sqrt{x}$

Restrictions?

Domain:

Range:

What do you notice about these 3 graphs?

Graphing Radical Functions Using Transformations

- Recall y = f(x) transforms into y = af(b(x-h)) + k)
- Transform the base function of $y = \sqrt{x}$ to become $y = a\sqrt{b(x-h)} + k$
- a, b, h, and k values are like last chapter

Example 2 – page 65

a)
$$y = 3\sqrt{-(x-1)}$$

Restrictions?

Assignment: Page 72 #1ac, 2ab, 3, 5acd, 9a

2.1 con't

The graph of $y = \sqrt{x}$ has the following characteristics:

- Left point at (0, 0)
- No right endpoint
- Shape of half a parabola
- Domain: $\{x: x \ge 0, x \in \Re\}$
- Range: $\{y: y \ge 0, y \in \Re\}$
- You can graph $y = a\sqrt{b(x-h)} + k$ by transforming $y = \sqrt{x}$

A radical function that involves a stretch can be obtained from either a *vertical* or a *horizontal* stretch. Use $y = a\sqrt{x}$ or $y = \sqrt{bx}$.

Example 3 – page 68

Pre-Calculus 30

2.2 Square Root of a Function

0 ()	, O 1											
x	y = f(x)	x	$y = \sqrt{f(x)}$	Use a large scale (each square= $1/4$) so that you can see the details of each								
-2		-2										
-1		-1										
_1		_1										
2		2										
0		0										
1		1										
2		2										
1		1										
2		2										
function and the relationship between them.												

Given f(x) = 2x + 1, graph the functions y = f(x) and $y = \sqrt{f(x)}$.

Where do the graphs of f(x) = 2x + 1 and $y = \sqrt{2x + 1}$ intersect? •

These are called invariant points because they don't change from one function to the other. Note the y-values in these invariant points. Written as generic coordinates $(x_1, 0)$ and $(x_2, 1)$.

- What is the domain of f(x) = 2x + 1? What is the range of f(x) = 2x + 1? •
- What is the domain of $y = \sqrt{2x+1}$? What is the range of $y = \sqrt{2x+1}$?

- The domain of $y = \sqrt{f(x)}$ is determined by the restrictions on the radicand.
- ★ The range of y = $\sqrt{f(x)}$ consists of the square roots of the values that are in the range of y = f(x), for which y = $\sqrt{f(x)}$ is defined.
- ★ The graph of y = $\sqrt{f(x)}$ exists only where $f(x) \ge 0$. The following table allows us to predict the location of the graph of $y = \sqrt{f(x)}$ relative to y = f(x), using the values of f(x).

Value of	f(x) < 0	f(x) = 0	0 < f(x) < 1	f(x) = 1	f(x) > 1
f(x)					
Relative	The graph of	The graphs of	The graph of	The graph of	The graph of
location of	$y = \sqrt{f(x)}$	$y = \sqrt{f(x)}$	$y = \sqrt{f(x)}$ is	$y = \sqrt{f(x)}$	$y = \sqrt{f(x)}$
Graph of $\sqrt{2}$	is undefined.	and	above the	intersects the	is below the
$y = \sqrt{f(x)}$		y = f(x)	graph of	graph of	graph of
		intersect on	y = f(x).	y = f(x).	y = f(x).
		the <i>x</i> -axis.			

Your Turn Given g(x) = 3x + 4, graph the functions y = g(x) and $y = \sqrt{g(x)}$. Note any invariant points and the domain and range of each function. Use the information in the

table to assist you in drawing the graph of $y = \sqrt{g(x)}$.

Assignment: Page 86 #1, 2, 4ac, 5, 8ab

Pre-Calculus 30

2.2 Square Root of a Function (con't)

Ex. Identify and compare the domains and ranges of $y = 2 - 0.5x^2$ and $y = \sqrt{2 - 0.5x^2}$.

- Think about what $y = 2 0.5x^2$ looks like.
- Rewrite in the form $y = -0.5x^2 + 2$ or $y = -0.5(x-0)^2 + 2$

- It's a parabola facing downwards, vertex at (٠
- Find the invariant points and join them with a slight curve • that flows **above** the original function.

y =

- y =
- Locate other *y*-values ٠
- Should there be arrow heads on your graph? ٠

For
$$y = 2 - 0.5x^2$$
, D: and R:

For
$$y = \sqrt{2 - 0.5x^2}$$
, D: and R

Example: Draw $y = \sqrt{f(x)}$

When is y = 1?

If
$$f(x) = 4$$
, then $\sqrt{f(x)} =$

Assignment: Page 86 #3, 6abc, 11ab

+	+	-							ŀ
+	_	<u> </u>							-
\Box									
Τ									
Τ									
									ſ
-									5

)

!:

Pre-Calculus 30

2.3 Solving Radical Equations

Example 1 Determine the roots(s) of $\sqrt{x+5}-3=0$. (Roots/solutions/x-intercepts). Note restrictions.

a) <u>Algebraically</u>

- Any roots that are discovered algebraically that are not in the domain are called *extraneous* roots.
- b) <u>Graphically</u> Determine the x-intercepts of $\sqrt{x+5} 3 = y$.

Example 2 Solve the equation $\sqrt{x+5} = x+3$ algebraically. Be sure to check for extraneous roots!

To solve this equation graphically, graph each side of the equation separately. One equation is $y = \sqrt{x+5}$ (the left-hand side) and the other equation is y = x+3 (the right-hand side). Find the point where these two functions intersect. Note that the final answer is ONLY the *x*-value...NOT the ordered pair!

	1			 			1		
1.1.1									
			-	-	-	_		-	_
			-	-		-		-	_
	100	100							
			-						
					-				_
			-	 		_		-	_
						_		-	
			-	-	-			-	_
			1				1		
	-	-	-			_			_
								_	_
			_	-				-	_
-			-	-	-		-	-	-

Assignment: Page 96 #2a, 6 (no restr.), 9 (no graph)