2.1 Radical Functions and Transformations

Question: What falls faster... a feather or a hammer?
http://www.youtube.com/watch?feature=endscreen\&NR=1\&v=4mTsrRZEMwA (50 seconds)

Investigate - page 62
$\underline{\text { Radical Function - a function containing a radical with a variable in the radicand. }}$

Example 1 - page 63
a) $y=\sqrt{x} \quad$ Restrictions?

Table of value - choose "nice" values

Domain:

Range:

b) $y=\sqrt{x-2}$

Restrictions?

Domain:

Range:
c) $y=-3 \sqrt{x}$

Domain:

Range:

What do you notice about these $\mathbf{3}$ graphs?

Graphing Radical Functions Using Transformations

- Recall $y=f(x)$ transforms into $y=a f(b(x-h))+k)$
- Transform the base function of $y=\sqrt{x}$ to become $y=a \sqrt{b(x-h)}+k$
- $\quad a, b, h$, and k values are like last chapter

Example 2 - page 65
a) $y=3 \sqrt{-(x-1)}$

Restrictions?

Assignment: Page 72 \#1ac, 2ab, 3, 5acd, 9a
2.1 con't

The graph of $y=\sqrt{x}$ has the following characteristics:

- Left point at $(0,0)$
- No right endpoint
- Shape of half a parabola
- Domain: $\{x: x \geq 0, x \in \mathfrak{R}\}$
- Range: $\{y: y \geq 0, y \in \mathfrak{R}\}$
- You can graph $y=a \sqrt{b(x-h)}+k$ by transforming $y=\sqrt{x}$

A radical function that involves a stretch can be obtained from either a vertical or a horizontal stretch. Use $y=a \sqrt{x}$ or $y=\sqrt{b x}$

Example 3 - page 68

Given $f(x)=2 x+1$, graph the functions $y=f(x)$ and $y=\sqrt{f(x)}$.

x	$y=f(x)$	x	$y=\sqrt{f(x)}$
-2		-2	
-1		-1	
$-\frac{1}{2}$		$-\frac{1}{2}$	
0		0	
$\frac{1}{2}$		$\frac{1}{2}$	
1		1	
2		2	

function and the relationship between them.
Use a large scale (each square $=1 / 4$) so
that you can see the details of each

- Where do the graphs of $f(x)=2 x+1$ and $y=\sqrt{2 x+1}$ intersect?

These are called invariant points because they don't change from one function to the other. Note the y-values in these invariant points. Written as generic coordinates $\left(x_{1}, 0\right)$ and $\left(x_{2}, 1\right)$.

- What is the domain of $f(x)=2 x+1$? What is the range of $f(x)=2 x+1$?
- What is the domain of $y=\sqrt{2 x+1}$? What is the range of $y=\sqrt{2 x+1}$?
* The domain of $y=\sqrt{f(x)}$ is determined by the restrictions on the radicand.
* The range of $y=\sqrt{f(x)}$ consists of the square roots of the values that are in the range of $y=f(x)$, for which $y=\sqrt{f(x)}$ is defined.
* The graph of $y=\sqrt{f(x)}$ exists only where $f(x) \geq 0$. The following table allows us to predict the location of the graph of $y=\sqrt{f(x)}$ relative to $y=f(x)$, using the values of $f(x)$.

Value of $f(x)$	$f(x)<0$	$f(x)=0$	$0<f(x)<1$	$f(x)=1$	$f(x)>1$
Relative location of Graph of $y=\sqrt{f(x)}$	The graph of				
$y=\sqrt{f(x)}$	is undefined.	The graphs of $y=\sqrt{f(x)}$ and $y=f(x)$ intersect on the x-axis.	The graph of $y=\sqrt{f(x)}$ is above the graph of $y=f(x)$.	The graph of $y=\sqrt{f(x)}$ intersects the graph of $y=f(x)$.	The graph of $y=\sqrt{f(x)}$ is below the graph of $y=f(x)$.

Your Turn Given $g(x)=3 x+4$, graph the functions $y=g(x)$ and $y=\sqrt{g(x)}$. Note any invariant points and the domain and range of each function. Use the information in the
table to assist you in drawing the graph of $y=\sqrt{g(x)}$.

Assignment: Page 86 \#1, 2, 4ac, 5, 8ab

Pre-Calculus 30

2.2 Square Root of a Function (con't)

Ex. Identify and compare the domains and ranges of $y=2-0.5 x^{2}$ and $y=\sqrt{2-0.5 x^{2}}$.

- Think about what $y=2-0.5 x^{2}$ looks like.
- Rewrite in the form $y=-0.5 x^{2}+2$ or $y=-0.5(x-0)^{2}+2$
- It's a parabola facing downwards, vertex at ()
- Find the invariant points and join them with a slight curve that flows above the original function.
$\mathrm{y}=$
$\mathrm{y}=$
- Locate other y-values

- Should there be arrow heads on your graph?

For $y=2-0.5 x^{2}, ~ D:$

For $y=\sqrt{2-0.5 x^{2}}, ~ D:$
and R:
and R :

Example: Draw $y=\sqrt{f(x)}$

When is $\mathrm{y}=0$?

When is $\mathrm{y}=1$?

If $f(x)=4$, then $\sqrt{f(x)}=$

Assignment: Page 86 \#3, 6abc, 11ab

Pre-Calculus 30 2.3 Solving Radical Equations

Example 1 Determine the roots(s) of $\sqrt{x+5}-3=0$. (Roots/solutions/x-intercepts). Note restrictions.
a) Algebraically
$>$ Any roots that are discovered algebraically that are not in the domain are called extraneous roots.
b) Graphically Determine the x -intercepts of $\sqrt{x+5}-3=y$.

Example 2 Solve the equation $\sqrt{x+5}=x+3$ algebraically. Be sure to check for extraneous roots!

To solve this equation graphically, graph each side of the equation separately. One equation is $y=\sqrt{x+5}$ (the left-hand side) and the other equation is $y=x+3$ (the right-hand side). Find the point where these two functions intersect. Note that the final answer is ONLY the \boldsymbol{x} value...NOT the ordered pair!

Assignment: Page 96 \#2a, 6 (no restr.), 9 (no graph)

