$$
\begin{array}{ll}
y=f(x)+k & \begin{array}{l}
\text { if } \mathrm{k}>0, \text { a vertical translation of " } \mathrm{k} \text { " units up } \\
\text { if } \mathrm{k}<0, \text { a vertical translation of " } \mathrm{k} \text { " units down }
\end{array} \\
y=f(x-h) & \begin{array}{l}
\text { if } \mathrm{h}>0 \text {, a horizontal translation of " } \mathrm{h} \text { " units to the right. } \\
\text { if } \mathrm{h}<0 \text {, a horizontal translation of " } \mathrm{h} \text { " units to the left. }
\end{array} \\
\begin{array}{ll}
y=-f(x) & \text { a reflection in the } \mathrm{x} \text {-axis } \\
y=f(-x) & \text { a reflection in the } y \text {-axis }
\end{array} \\
\begin{array}{ll}
y=a f(x) & \text { a vertical stretch about the } x \text {-axis by a factor of }|a| \\
y=f(b x) & \text { a horizontal stretch about the } y \text {-axis by a factor of } \frac{1}{|b|} \\
y=a f(b(x-h))+k
\end{array} \\
\begin{array}{ll}
\text { Mapping Notation (image points): }(x, y) \rightarrow\left(\frac{1}{b} x+h, a y+k\right)
\end{array}
\end{array}
$$

Invariant points - points that remain the same after a transformation is applied.

Writing equations: Look at stretches (a and b) and reflections ($-a$ and $-b$) first. Then look at translations/shifts (h and k).

Inverse of a relation:

- interchange the x-coordinates and y-coordinates
- the graph of the inverse is a reflection of the relation in the line $y=x$
- domain and range are reversed
- if the inverse of a function $f(x)$ is a function, it is written $f^{-1}(x)$

Review Questions

Page 56 \#1, 2, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16 (first part)

