1.1 Horizontal and Vertical Translations

Frieze Patterns

<u>Transformation</u> – a shifting or change in shape of a graph

<u>Mapping</u> – the relating of one set of points to another set of points (ie. points on the original graph and points on the transformed graph.)

<u>Translation</u> – moves the graph up, down, left or right. (the location of the graph changes, but the shape does not)

<u>Image Points</u> – the point that is the result of a transformation of a point on the original graph (Often a prime symbol next to the letter representing an image point is used. Ex. A')

Investigate

- 1. a) Let f(x) = |x| Use a table of values to compare the following outputs. y = f(x), y = f(x) + 3, y = f(x) - 3, given input values of -3, -2, -1, 0, 1, 2, 3
 - b) Graph the functions on the same set of coordinate axes.

x	f(x) = x	f(x) = x - 3	f(x) = x + 3
-3			
-2			
-1			
0			
1			
2			
3			

x	f(x) = x	f(x) = x-3	f(x) = x+3
-9			
-6			
-3			
0			
3			
6			
9			

2. a) Let f(x) = |x| Use a table of values to compare the following outputs. y = f(x), y = f(x+3), y = f(x-3), given input values of -3, -2, -1, 0 1, 2, 3

b) Graph the functions on the same set of

coordinate axes.

3. a) Graph the functions $y = x^2$, $y - 2 = x^2$, $y = (x - 5)^2$ on the same set of coordinate axes.

x	$y = x^2$	$y = x^2 + 2$
-3		

-2									 	
-1										
0										
1										
2										
3										
L	1		1							
x	y = (x - 5)	$)^2$								
2										
3										
4										

x	$y = (x-5)^2$
2	
3	
4	
5	
6	
7	
8	

Key Points

Function	Transformation from $y = f(x)$	Mapping	Visual Example
y-k = f(x) or y = f(x) + k			$\mathbf{y} = \ \mathbf{x}\ $
y = f(x - h)			

1.2 Reflections and Stretches

Reflection – a transformation where each point on the original graph has an image point resulting from a reflection in a line (orientation may change, but shape remains the same).

Invariant Point – a point on a graph that remains unchanged after a transformation is applied to it (it lies on the line of reflection)

Investigate: Reflections of a Function y = f(x)

1. Draw the graph of y = f(x) using the given points. Graph y = f(-x) on the same set of axes. Give the mapping notation of the key points representing the transformation.

2. Draw the graph of y = f(x) using the given points. Graph y = -f(x) on the same set of axes. Give the mapping notation of the key points representing the transformation.

y=f(x)		y=-f(x)
(x, y)	\rightarrow	
(-6, 6)	\rightarrow	
(-2, -2)	\rightarrow	
(0, -2)	\rightarrow	
(3, 1)	\rightarrow	
(5, 0)	\rightarrow	

Invariant point(s):_____

Summary :

Vertical Reflection Function : y = -f(x)Mapping: $(x, y) \rightarrow$ line of reflection: x-axis

y = -f(x) represents a _____ reflection of the function in the ___ - axis

<u>Horizontal Reflecti</u>on Function : y = f(-x)Mapping: $(x, y) \rightarrow$ line of reflection: y-axis

- 3. Consider each graph of a function.
 - Copy the graph of the function and sketch its reflection in the x-axis on the same set of axes.
 - State the equation of the reflected function in simplified form.
 - State the domain and range of each function.

- 4. Consider each function in #3.
 - Copy the graph of the function and sketch its reflection in the y-axis on the same set of axes.
 - State the equation of the reflected function.
 - State the domain and range for each function.

1.2 Reflections and Stretches (con't)

<u>Stretch</u> – a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor (orientation does not change, but the shape changes).

- 1. <u>Vertical Stretches of a Function y = af(x)</u>
 - A vertical stretching is the stretching of the graph away from the x-axis. (|a| > 1)
 - A vertical compression is the squeezing of the graph towards the x-axis. (|a| < 1)
 - If *a* is **negative**, then the vertical compression or vertical stretching of the graph is **followed by a reflection** across the *x*-axis.

Complete the table below using the given x values. Then graph of f(x), g(x) and h(x).

x	y = f(x)	y = g(x) = 2f(x)	$y = h(x) = \frac{1}{2}f(x)$
-6	4		
-2	0		
0	2		
2	0		
6	4		

Invariant Point(s):

<u>For <i>f</i>(<i>x</i>):</u>	For $g(x)$:	For $h(x)$:
Domain is	Domain is	Domain is
Range is	Range is	Range is

2. <u>Horizontal Stretches of a Function y = f(bx)</u>

- A horizontal stretching is the stretching of the graph away from the y-axis.
- A horizontal compression is the squeezing of the graph towards the y-axis.
- If *b* is **negative**, the horizontal compression or horizontal stretching of the graph is **followed by a reflection** of the graph across the *y*-axis.

Complete the table below, then graph f(x), g(x) and h(x)

x	y = f(x)	x	y = g(x) = f(2x)	x	$y = h(x) = f\left(\frac{1}{2}x\right)$
-4	4	-2		-8	
-2	0	-1		-4	
0	2	0		0	
2	0	1		4	
4	4	2		8	

Invariant Point(s):

For f(x):

For g(x):

For h(x):

Domain is Range is **Summary:** Domain is Range is Domain is Range is

Vertical Stretch/Compression

y = af(x)

vertical stretch by a factor of |a|

If a < 0, graph is reflected in the x-axis

 $(x, y) \rightarrow (x, ay)$

Horizontal Stretch/Compression

y = f(bx)horizontal stretch by a factor of $\frac{1}{|b|}$

If b < 0, graph is reflected in the y-axis $(x, y) \rightarrow (\frac{x}{b}, y)$

Assignment: Page 28 #2ab, 6a, 7ac, 8, 9abcd

<u>1.3 Combining Transformations</u>

Translation: y = f(x-h) + k $(x, y) \rightarrow (___, __)$ Reflection: y = -f(x) $(x, y) \rightarrow (___, __)$ y = f(-x) $(x, y) \rightarrow (___, __)$ Stretch: y = af(bx) $(x, y) \rightarrow (___, __)$

Your Turn for Example 1

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.

a)
$$y = 2f(x) - 3$$

b) $y = f(\frac{1}{2}x - 2)$

Your Turn for Example 2

Describe the combination of transformations that should be applied to the function $y = x^2$ to obtain the transformed function $g(x) = -2f(\frac{1}{2}(x+8)) - 3$. Sketch the graph, showing each step of the transformation. Write the corresponding equation and sketch the graph of g(x).

Your Turn for Example 3

The graph of the function y = g(x) represents a transformation of the graph of y = f(x). State the equation of the transformed function. Explain your answer.

1.3 Combining Transformations

- Write the function in the form: y = a f(b(x-h)) + k in order to identify the transformations.
- Stretches and reflections can be done in any order but *before* translations.
- *a* corresponds to a ______stretch about the x-axis by a factor of |*a*|. If
 a is negative, the function is reflected in the _____.
- *b* corresponds to a ______stretch about the y-axis by a factor of $\frac{1}{|b|}$. If

b is negative, the function is reflected in the _____

- *h* corresponds to a ______translation
- k corresponds to a ______translation
- Mapping Notation: $(x, y) \rightarrow$

<u>Ex. 1</u> Given the graph of y = f(x), sketch the graph of:

a) y = 3f(2x)

For this function, $a = _, b = _, h = _, k = _$.

If each ordered pair of y = f(x) is considered to be (x, y), then the new ordered pairs will be (,). So $(0,0) \rightarrow (,)$; $(1,1) \rightarrow (,)$; $(4,2) \rightarrow (,)$; $(9,3) \rightarrow (,)$. Sketch the new function and label it.

b) y = f(3x+6)

For this function, rewrite as y = f(3(x+2)). Now $a = _, b = _, h = _, k = _$.

If each ordered pair of y = f(x) is considered to be (x, y), then the new ordered pairs will be

(,). So, $(0,0) \rightarrow ($,); $(1,1) \rightarrow ($,); $(4,2) \rightarrow ($,), and $(9,3) \rightarrow ($,). Sketch the new function and label it.

<u>1.3 Combining Transformations – Writing Equations</u>

Steps:

- 1. Did the graph stretch vertically? a =
- 2. Did the graph stretch horizontally? $\frac{1}{b} = (**reciprocate to find b value)$
- 3. Did it reflect? In which axis? Negate a and/or b value if necessary
- 4. Did the entire graph shift left/right? b =
- 5. Did the entire graph shift up/down? k =
- 6. Write equation in the form: y = af(b(x-h)) + k

Stretches and Reflections must be done first. Then look at shifts up and down.

- ** Example 3 on page 37
- ** Page 38 #1a

Assignment: Page 38 #1b, 4, 8, 10b, 11ab

#2a

<u>1.4 Inverse of a Relation</u>

http://www.khanacademy.org/math/algebra/algebra-functions/v/introduction-to-function-inverses Inverse of a Relation

- Often thought of as "undoing" or "reversing" a position or effect
- found by interchanging the x-coordinates and y-coordinates of ordered pairs. $(x, y) \rightarrow (y, x)$
- the domain and range of a relation become the range and domain, respectively, of the inverse of the relation.
- the graph of a relation and its inverse are *reflections* of each other in the line y = x
- the inverse of a function is not necessarily a function. (use *horizontal* line test on the original function to see if inverse is a function)
- when the inverse of a function f(x) is a function, it is written as $f^{-1}(x)$

Examples: Page 51 #2, 5e, 8a, 9c

#2b

Assignment: Page 52 #3abc, 5abcd, 7a, 8bc, 9b, 11, 13a, 15a, 16abc