1.1 Horizontal and Vertical Translations

Frieze Patterns

$\underline{\text { Transformation }}$ - a shifting or change in shape of a graph

Mapping - the relating of one set of points to another set of points (ie. points on the original graph and points on the transformed graph.)

Translation - moves the graph up, down, left or right. (the location of the graph changes, but the shape does not)

Image Points - the point that is the result of a transformation of a point on the original graph (Often a prime symbol next to the letter representing an image point is used. Ex. A^{\prime})

Investigate

1. a) Let $f(x)=|x|$ Use a table of values to compare the following outputs.
$y=f(x), y=f(x)+3, y=f(x)-3$, given input values of $-3,-2,-1,01,2,3$
b) Graph the functions on the same set of coordinate axes.

x	$f(x)=\|x\|$	$f(x)=\|x\|-3$	$f(x)=\|x\|+3$
-3			
-2			
-1			
0			
1			
2			
3			

x	$f(x)=\|x\|$	$f(x)=\|x-3\|$	$f(x)=\|x+3\|$
-9			
-6			
-3			
0			
3			
6			
9			

2. a) Let $f(x)=|x|$ Use a table of values to compare the following outputs.
$y=f(x), y=f(x+3), y=f(x-3)$, given input values of $-3,-2,-1,01,2,3$
b) Graph the functions on the same set of
3. a) Graph the functions $y=x^{2}, y-2=x^{2}$, $y=(x-5)^{2}$ on the same set of coordinate axes.

x	$y=x^{2}$	$y=x^{2}+2$
-3		

-2		
-1		
0		
1		
2		
3		

Key Points

Function	Transformation from $y=f(x)$	Mapping	Visual Example
$\begin{aligned} & y-k=f(x) \quad \text { or } \\ & y=f(x)+k \end{aligned}$			
$y=f(x-h)$			

Reflection - a transformation where each point on the original graph has an image point resulting from a reflection in a line (orientation may change, but shape remains the same).

Invariant Point - a point on a graph that remains unchanged after a transformation is applied to it (it lies on the line of reflection)

Investigate: Reflections of a Function $y=f(x)$

1. Draw the graph of $y=f(x)$ using the given points. Graph $y=f(-x)$ on the same set of axes. Give the mapping notation of the key points representing the transformation.

$y=f(x)$		$y=f(-x)$
(x, y)	\rightarrow	
$(-6,6)$	\rightarrow	
$(-2,-2)$	\rightarrow	
$(0,-2)$	\rightarrow	
$(3,1)$	\rightarrow	
$(5,0)$	\rightarrow	

Invariant point(s): \qquad

$y=f(-x)$ represents a \qquad reflection of the function in the \qquad - axis
2. Draw the graph of $y=f(x)$ using the given points. Graph $y=-f(x)$ on the same set of axes. Give the mapping notation of the key points representing the transformation.

$y=f(x)$		$y=-f(x)$
(x, y)	\rightarrow	
$(-6,6)$	\rightarrow	
$(-2,-2)$	\rightarrow	
$(0,-2)$	\rightarrow	
$(3,1)$	\rightarrow	
$(5,0)$	\rightarrow	

Invariant point(s): \qquad

$y=-f(x)$ represents a \qquad reflection of the function in the \qquad - axis

Summary :

Vertical Reflection
Function: $y=-f(x)$
Mapping: $(x, y) \rightarrow$
line of reflection: x -axis

Horizontal Reflection

Function: $y=f(-x)$
Mapping: $(x, y) \rightarrow$
line of reflection: y -axis

Assignment: Page 28 \#1ab, 3, 4 (see below for \#3 and \#4)
3. Consider each graph of a function.

- Copy the graph of the function and sketch its reflection in the x-axis on the same set of axes.
- State the equation of the reflected function in simplified form.
- State the domain and range of each function.
a)

b)

c)

4. Consider each function in \#3.

- Copy the graph of the function and sketch its reflection in the y-axis on the same set of axes.
- State the equation of the reflected function.
- State the domain and range for each function.
a)

b)

c)

1.2 Reflections and Stretches (con't)

Stretch - a transformation in which the distance of each x-coordinate or y-coordinate from the line of reflection is multiplied by some scale factor (orientation does not change, but the shape changes).

1. Vertical Stretches of a Function $y=a f(x)$

- A vertical stretching is the stretching of the graph away from the x-axis. (|a|>1)
- A vertical compression is the squeezing of the graph towards the x-axis. $(|\mathrm{a}|<1)$
- If a is negative, then the vertical compression or vertical stretching of the graph is followed by a reflection across the x-axis.

Complete the table below using the given x values. Then graph of $f(x), g(x)$ and $h(x)$.

x	$y=f(x)$	$y=g(x)=2 f(x)$	$y=h(x)=\frac{1}{2} f(x)$
-6	4		
-2	0		
0	2		
2	0		
6	4		

Invariant Point(s):

For $f(x)$:
Domain is
Range is

For $g(x)$:
Domain is
Range is

For $h(x)$:
Domain is
Range is
2. Horizontal Stretches of a Function $y=f(b x)$

- A horizontal stretching is the stretching of the graph away from the \boldsymbol{y}-axis.
- A horizontal compression is the squeezing of the graph towards the y-axis.
- If b is negative, the horizontal compression or horizontal stretching of the graph is followed by a reflection of the graph across the \boldsymbol{y}-axis.

Complete the table below, then graph $f(x), g(x)$ and $h(x)$

x	$y=f(x)$	x	$y=g(x)=f(2 x)$	x	$y=h(x)=f\left(\frac{1}{2} x\right)$
-4	4	-2		-8	
-2	0	-1		-4	
0	2	0		0	
2	0	1		4	
4	4	2		8	

Invariant Point(s):

Domain is	Domain is	Domain is
Range is	Range is	Range is
Summary:		

Vertical Stretch/Compression
$y=a f(x)$
vertical stretch by a factor of $|a|$
If $\mathrm{a}<0$, graph is reflected in the x -axis
$(x, y) \longrightarrow(x, a y)$

Horizontal Stretch/Compression

$y=f(b x)$
horizontal stretch by a factor of $\frac{1}{|b|}$
If $\mathrm{b}<0$, graph is reflected in the y -axis
$(x, y) \rightarrow\left(\frac{x}{b}, y\right)$

Assignment: Page 28 \#2ab, 6a, 7ac, 8, 9abcd

Translation: $y=f(x-h)+k$
$(x, y) \rightarrow($ \qquad , _)

Reflection:

$$
\begin{aligned}
& y=-f(x) \\
& y=f(-x)
\end{aligned}
$$

$$
(x, y) \rightarrow(
$$

\qquad _-)

$$
(x, y) \rightarrow(
$$

\qquad
Stretch: $y=a f(b x)$
$(x, y) \rightarrow($ \qquad , -_)

Your Turn for Example 1

Describe the combination of transformations that must be applied to the function $y=f(x)$ to obtain the transformed function. Sketch the graph, showing each step of the transformation.

a) $y=2 f(x)-3$
b) $y=f\left(\frac{1}{2} x-2\right)$

Your Turn for Example 2

Describe the combination of transformations that should be applied to the function $y=x^{2}$ to obtain the transformed function $g(x)=-2 f\left(\frac{1}{2}(x+8)\right)-3$. Sketch the graph, showing each step of the transformation. Write the corresponding equation and sketch the graph of $g(x)$.

Your Turn for Example 3

The graph of the function $y=g(x)$ represents a transformation of the graph of $y=f(x)$. State the equation of the transformed function. Explain your answer.

1.3 Combining Transformations

- Write the function in the form: $\quad y=a f(b(x-h))+k$ in order to identify the transformations.
- Stretches and reflections can be done in any order but before translations.
- a corresponds to a \qquad stretch about the x-axis by a factor of $|a|$. If a is negative, the function is reflected in the \qquad .
- b corresponds to a \qquad stretch about the y -axis by a factor of $\frac{1}{|b|}$. If b is negative, the function is reflected in the \qquad .
- b corresponds to a \qquad translation
- k corresponds to a \qquad translation
- Mapping Notation: $(x, y) \rightarrow$

Ex. 1 Given the graph of $y=f(x)$, sketch the graph of:
a) $y=3 f(2 x)$

For this function, $a=$ \qquad \ldots, h \qquad
\qquad
If each ordered pair of $y=f(x)$ is considered to be (x, y), then the new ordered pairs will be (\quad, \quad) So $(0,0) \rightarrow(\quad, \quad) ;(1,1) \longrightarrow(\quad, \quad) ;(4,2) \rightarrow(\quad, \quad) ;(9,3) \rightarrow(\quad, \quad)$.
Sketch the new function and label it.
b) $y=f(3 x+6)$

For this function, rewrite as $y=f(3(x+2))$. Now $a=\ldots, b=$ \qquad , $h=$ \qquad $k=$ \qquad
If each ordered pair of $y=f(x)$ is considered to be (x, y), then the new ordered pairs will be (,).
So, $(0,0) \rightarrow(\quad, \quad) ;(1,1) \rightarrow(\quad, \quad) ;(4,2) \rightarrow(\quad, \quad$, and $(9,3) \rightarrow(\quad, \quad$. Sketch the new function and label it.

Assignment: Page 38 \#2, 6, 9ace

1.3 Combining Transformations - Writing Equations

Steps:

1. Did the graph stretch vertically? $a=$
2. Did the graph stretch horizontally? $\frac{1}{b}=\quad(* *$ reciprocate to find b value $)$
3. Did it reflect? In which axis? Negate a and/or b value if necessary
4. Did the entire graph shift left/right? $b=$
5. Did the entire graph shift up/down? $k=$
6. Write equation in the form: $y=a f(b(x-h))+k$

Stretches and Reflections must be done first. Then look at shifts up and down.
** Example 3 on page 37
** Page 38 \#1a
Assignment: Page 38 \#1b, 4, 8, 10b, 11ab

1.4 Inverse of a Relation

http://www.khanacademy.org/math/algebra/algebra-functions/v/introduction-to-function-inverses
Inverse of a Relation

- Often thought of as "undoing" or "reversing" a position or effect
- found by interchanging the x-coordinates and y-coordinates of ordered pairs. $(x, y) \rightarrow(y, x)$
- the domain and range of a relation become the range and domain, respectively, of the inverse of the relation.
- the graph of a relation and its inverse are reflections of each other in the line $y=x$
- the inverse of a function is not necessarily a function. (use horizontal line test on the original function to see if inverse is a function)
- when the inverse of a function $f(x)$ is a function, it is written as $f^{-1}(x)$

Examples: Page $51 \# 2,5 \mathrm{e}, 8 \mathrm{a}, 9 \mathrm{c}$
\#2a

\#2b

Assignment: Page 52 \#3abc, 5abcd, 7a, 8bc, 9b, 11, 13a, 15a, 16abc

