Chapter 10 Review

Sum of Functions

$$
h(x)=f(x)+g(x) \quad \text { This can also be written as } h(x)=(f+g)(x)
$$

Difference of Functions

$$
h(x)=f(x)-g(x) \quad \text { This can also be written as } h(x)=(f-g)(x)
$$

Product of Functions

$$
h(x)=f(x) g(x) \quad \text { This can also be written as } h(x)=(f \bullet g)(x)
$$

Quotient of Functions

$$
h(x)=\frac{f(x)}{g(x)} \quad \text { This can also be written as } h(x)=\left(\frac{f}{g}\right)(x), \quad \text { where } g(x) \neq 0
$$

We can substitute one function, $f(x)$, into another function, $g(x)$. The result would be $g(f(x))$.

This is read " g of f of x ".
The notation for this function composition is $(g \circ f)(x) \ldots$ not to be confused with multiplication which is $(g \bullet f)(x)$.

