10.1 and 10.2 Function Operations

Sum of Functions

$$
h(x)=f(x)+g(x) \quad \text { This can also be written as } h(x)=(f+g)(x)
$$

Difference of Functions

$h(x)=f(x)-g(x) \quad$ This can also be written as $h(x)=(f-g)(x)$

Examples

1. Given the functions $f(x)=2 x+1$ and $g(x)=x^{2}$, determine the function $h(x)=(f+g)(x)$. Find $h(3)$.
2. Given the functions $f(x)=\sqrt{x-1}$ and $g(x)=x-2$, determine $h(x)=f(x)-g(x)$.
3. If $h(x)=(f+g)(x)$ and $f(x)=5 x+2$, determine $g(x)$ when $h(x)=\sqrt{x+7}+5 x+2$.

Product of Functions

$$
h(x)=f(x) g(x) \quad \text { This can also be written as } h(x)=(f \bullet g)(x)
$$

Quotient of Functions

$$
h(x)=\frac{f(x)}{g(x)} \quad \text { This can also be written as } h(x)=\left(\frac{f}{g}\right)(x), \quad \text { where } g(x) \neq 0
$$

Examples Given $f(x)=x^{2}+x-6$ and $g(x)=2 x+6$, determine the following and state any non-permissible values.
a) $h(x)=(f \bullet g)(x)$
b) $h(x)=\left(\frac{g}{f}\right)(x)$

Assignment: Page 483 \#1 - 4, 9-11 (just parts "a" and "c" of all questions)
Page 496 \#1, $6-8$ (just parts "a" and "c" of all questions)

Pre-Calculus

- We can substitute one function, $f(x)$, into another function, $g(x)$. The result would be $g(f(x))$. This is read " g of f of x ".
- The notation for this function composition is $(g \circ f)(x) \ldots$ not to be confused with multiplication which is $(g \bullet f)(x)$.

Example: Evaluate for $f(x)=4 x, g(x)=x+6, h(x)=x^{2}$.

1. $f(g(3))$
2. $g(h(-2))$
3. $h(h(2))$

Example: If $f(x)=|x|$ and $g(x)=x+1$, determine $f(g(-11))$.

Ex. 3, p. 503 Let $f(x)=x+1$ and $g(x)=x^{2}$. Determine the equation of each composite function. Sketch the graph and state the domain and range.
a) $y=f(g(x))$
b) $y=f(f(x))$

10.3 Composite Functions (Day 2)

A. Composite functions and restrictions - Does order matter when composing functions?

Consider $f(x)=\sqrt{x-1}$ and $g(x)=x^{2}$.
a) Determine $(f \circ g)(x)$.
b) Determine $(g \circ f)(x)$.
domain of $f(x)$:
domain of $g(x)$:
domain of $(f \circ g)(x)$
domain of $(g \circ f)(x)$

- find the restrictions of $g(x)$ and then of $f(g(x))$
- find the restrictions of $f(x)$ and then of $g(f(x))$
B. Determining the original functions from a composition.

If $h(x)=f(g(x))$, determine $f(x)$ and $g(x)$.
a) $h(x)=(x-2)^{2}+(x-2)+1$
b) $h(x)=\sqrt{x^{3}+1}$

Look for common elements. What do you see?
Start with the function inside the radical.

Your Turn If $h(x)=f(g(x))$, determine $f(x)$ and $g(x)$. Here, $h(x)=\sqrt[3]{x}+\frac{3}{3+\sqrt[3]{x}}$.

C. Applications (Page 505 Example 5)

A spherical weather balloon is being inflated. The balloon's radius, r, in feet, after t minutes is given by $r=\sqrt{t}$.
a) Express the volume of the balloon as a function of time, t. Recall volume of a sphere is $V(r)=\frac{4}{3} \pi r^{3}$.

Compose the new function.
b) After how many minutes will the volume be $4000 \mathrm{ft}^{3}$?

Your Turn. Same base question as above
a) Express the surface area of the balloon as a function of time, t. Recall surface area of a sphere is $S A=4 \pi r^{2}$
b) After how many minutes will the surface area be $180 \mathrm{ft}^{2}$?

Assignment: Page $507 \# 6-8,11 \mathrm{a}, 14,16$ (show 1 method only), 18

Pre-Calculus 30

