Pre-Calculus 30

Chapter 4 Review

Radians \rightarrow degrees: multiply by $\frac{180^{\circ}}{\pi}$

Degrees \rightarrow radians: multiply by $\frac{\pi}{180^{\circ}}$

Coterminal Angles

Standard Position of an angle

Arc Length: $a = \theta r$ (remember θ must be in radians!)

Unit Circle

•
$$P\left(\frac{\pi}{3}\right) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$
 $P\left(\frac{\pi}{4}\right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ $P\left(\frac{\pi}{6}\right) = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$

- Radius of 1
- Equation of unit circle: $x^2 + y^2 = 1$

Equation of a circle with center at (0, 0) and radius r: $x^2 + y^2 = r^2$

Memorize $30^{\circ} - 60^{\circ} - 90^{\circ}$ and $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle

 $P(\theta) = (\cos\theta, \sin\theta)$ for any point $P(\theta)$ on the intersection of the terminal arm of θ and the unit circle

Reciprocal trig ratios: $\csc \theta = \frac{1}{\sin \theta}$, $\sec \theta = \frac{1}{\cos \theta}$, $\cot \theta = \frac{1}{\tan \theta}$

Find *exact* values of trig ratios for special angles – Use the unit circle.

Find *approximate* values for trig ratios using a calculator (degrees or radians)

Find the trig ratios for an angle in standard position from the coordinates of a point on the terminal arm.

Solve trig equations. Use reference angles and "CAST" to find solutions in other quadrants. Watch domain!

Assignment: Page 215 #1 – 7, 9 – 17, 19 – 21