Chapter 4 Review

Radians \rightarrow degrees: multiply by $\frac{180^{\circ}}{\pi}$
Degrees \rightarrow radians: multiply by $\frac{\pi}{180^{\circ}}$
Coterminal Angles
Standard Position of an angle
Arc Length: $\mathrm{a}=\theta \mathrm{r}$ (remember θ must be in radians!)
Unit Circle

- $P\left(\frac{\pi}{3}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \quad P\left(\frac{\pi}{4}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \quad P\left(\frac{\pi}{6}\right)=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
- Radius of 1
- Equation of unit circle: $x^{2}+y^{2}=1$

Equation of a circle with center at $(0,0)$ and radius r: $x^{2}+y^{2}=r^{2}$
Memorize $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ triangle
$P(\theta)=(\cos \theta, \sin \theta)$ for any point $P(\theta)$ on the intersection of the terminal arm of θ and the unit circle
Reciprocal trig ratios: $\csc \theta=\frac{1}{\sin \theta}, \quad \sec \theta=\frac{1}{\cos \theta}, \quad \cot \theta=\frac{1}{\tan \theta}$
Find exact values of trig ratios for special angles - Use the unit circle.
Find approximate values for trig ratios using a calculator (degrees or radians)
Find the trig ratios for an angle in standard position from the coordinates of a point on the terminal arm.
Solve trig equations. Use reference angles and "CAST" to find solutions in other quadrants. Watch domain!

Assignment: Page 215 \#1-7, 9-17, 19-21

