Pre-Calculus 30

<u>Trigonometric Identity</u> – a trig equation that is true for all permissible values of the variable in the expressions on both sides of the equation.

Quotient Identities				
$\tan x = \frac{\sin x}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$			

Example: a) Determine the non-permissible values, in degrees, for the equation $\sec \theta = \frac{\tan \theta}{\sin \theta}$

b) Verify that $\theta = 60^{\circ}$ is a solution of the equation

Example: Simplify the expression $\frac{\cot x}{\csc x \cos x}$

Pythagorean Theorem states:

$$x^2 + y^2 = 1$$
 OR $\cos^2 \theta + \sin^2 \theta = 1$

1. Multiply this equation by $\frac{1}{\sin^2 \theta}$

2. Multiply this equation by $\frac{1}{\cos^2 \theta}$

 $\cos^2\theta + \sin^2\theta = 1$

Example: Verify the 3 Pythagorean Identities are true when $\theta = 30^{\circ}$

Pre-Calculus 30

6.3 Proving Identities

<u>Proving Identities</u> – algebraically manipulate the sides of an equation into identical expressions. You may NOT perform operations across the equal sign when proving identities.

Strategies

- Use known identities to make substitutions (reciprocal identities)
- If the equation contains quadratics, use one of the Pythagorean Identities
- Rewrite the expression using only sine and cosine
- Multiply the numerator and denominator by the conjugate of an expression
- Factor to simplify expressions
- Manipulate the more complex side of the equation

Example:	Prove $1 - \sin^2 x = \sin x \cos x \cot x$	Example: Prove	$\frac{\tan x \cos x}{\cos x} = 1 - \cos^2 x$	
			$\csc x$	

Example: Prove	$\frac{1-\cos x}{\sin x} = \frac{\sin x}{\cos x}$	Example: Prove	$\csc^2 x + \csc^2$	$x \cot^2 x = \csc^4 x$	
	$\sin x$	$1 + \cos x$	<u>Example</u> . Hove		

Assignment: Page 314 #1, 2, 3

Prove that each of the following equations is an identity. (Page 150 in Math C30 by Thiessen)