Trigonometric Identity - a trig equation that is true for all permissible values of the variable in the expressions on both sides of the equation.

	Reciprocal Identities	
$\csc x=\frac{1}{\sin x}$	$\sec x=\frac{1}{\cos x}$	$\cot x=\frac{1}{\tan x}$

Quotient Identities

$$
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}
$$

Example: a) Determine the non-permissible values, in degrees, for the equation $\sec \theta=\frac{\tan \theta}{\sin \theta}$
b) Verify that $\theta=60^{\circ}$ is a solution of the equation

Example: Simplify the expression $\frac{\cot x}{\csc x \cos x}$

Pythagorean Theorem states:
$x^{2}+y^{2}=1 \quad$ OR $\quad \cos ^{2} \theta+\sin ^{2} \theta=1$

1. Multiply this equation by $\frac{1}{\sin ^{2} \theta}$

2. Multiply this equation by $\frac{1}{\cos ^{2} \theta}$

Pythagorean Identities

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Example: Verify the 3 Pythagorean Identities are true when $\theta=30^{\circ}$

6.3 Proving Identities

Proving Identities - algebraically manipulate the sides of an equation into identical expressions. You may NOT perform operations across the equal sign when proving identities.

Strategies

- Use known identities to make substitutions (reciprocal identities)
- If the equation contains quadratics, use one of the Pythagorean Identities
- Rewrite the expression using only sine and cosine
- Multiply the numerator and denominator by the conjugate of an expression
- Factor to simplify expressions
- Manipulate the more complex side of the equation

Example: Prove $1-\sin ^{2} x=\sin x \cos x \cot x \quad$ Example: Prove $\frac{\tan x \cos x}{\csc x}=1-\cos ^{2} x$

Example: Prove $\frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}$
Example: Prove $\csc ^{2} x+\csc ^{2} x \cot ^{2} x=\csc ^{4} x$

Assignment: Page 314 \#1, 2, 3
Prove that each of the following equations is an identity. (Page 150 in Math C30 by Thiessen)

